Semiconductor photocatalyst mediated advanced oxidation processes are regarded as one of the most efficient technologies to mitigate organic pollutants in water. However, poor activity under visible light and the recombination of photogenerated electron and hole pairs hinder large scale applicability of semiconductor photocatalysts for water purification. The modification of semiconductor photocatalysts with carbon quantum dots (CQDs) is of high importance due to low toxicity, aqueous stability, enhanced surface area, economic feasibility, good biocompatibility and chemical inertness of CQDs. In this review, we highlight strategies to improve the activity of conventional semiconductor photocatalysts via coupling with CQDs. The enhanced photocatalytic activity of CQD modified narrow and wide band gap photocatalysts is due mainly to up-conversion photoluminescence (UPCL) and the electron reservoir properties of CQDs, while in the case of Z-scheme photocatalysts CQDs act as an electron mediator. Finally, a conclusive outlook and suggested research directions are provided to address challenges such as the inadequate separation of photoinduced charge carriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.