M ain aim of this study was to develop controlled release (CR) floating multiparticulate drug delivery system of tolperisone hydrochloride. Microspheres were prepared by nonaqueous solvent evaporation technique consisting of porous calcium silicate (Florite or FLR) as porous carrier, tolperisone hydrochloride (API), Ethyl cellulose (EC), and HPMC 15 cPs as rate controlling polymers. 2 3 full factorial design was applied for optimization of formulation. The effect of various formulation and process variables on the particle morphology, micromeritic properties, in vitro floating behavior, entrapment efficiency, and in vitro drug release were studied. The size of microspheres was varied from 300 to 500 μm. The microspheres were found to be highly porous and regular in shape. All the formulations showed excellent flow properties. The percentage entrapment efficiency of all batches was greater than 80%. The percentage buoyancy varied from 85% to 98% at the end of 12 h. The release rate was determined in simulated gastric fluids. The formulation demonstrated favorable in vitro floating and release characteristics. Different kinetic models were applied to study the release mechanism. All formulations followed Higuchi model, which indicates the diffusion control release of water soluble drug from polymer matrix. Multiple regression analysis was applied for study of the effect of independent variables on the dependent variables. Optimized content for mobile and hand-held devicesHTML pages have been optimized of mobile and other hand-held devices (such as iPad, Kindle, iPod) for faster browsing speed. Click on [Mobile Full text] from Table of Contents page. This is simple HTML version for faster download on mobiles (if viewed on desktop, it will be automatically redirected to full HTML version)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.