Alzheimer's disease (AD) is associated with deficits in a number of cognitive processes and executive functions. Moreover, abnormalities in the electroencephalogram (EEG) power spectrum develop with the progression of AD. These features have been traditionally characterized with montage recordings and conventional spectral analysis during resting eyes-closed and resting eyes-open (EO) conditions. In this study, we introduce a single lead dry electrode EEG device which was employed on AD and control subjects during resting and activated battery of cognitive and sensory tasks such as Paced Auditory Serial Addition Test (PASAT) and auditory stimulations. EEG signals were recorded over the left prefrontal cortex (Fp1) from each subject. EEG signals were decomposed into sub-bands approximately corresponding to the major brain frequency bands using several different discrete wavelet transforms and developed statistical features for each band. Decision tree algorithms along with univariate and multivariate statistical analysis were used to identify the most predictive features across resting and active states, separately and collectively. During resting state recordings, we found that the AD patients exhibited elevated D4 (~4-8 Hz) mean power in EO state as their most distinctive feature. During the active states, however, the majority of AD patients exhibited larger minimum D3 (~8-12 Hz) values during auditory stimulation (18 Hz) combined with increased kurtosis of D5 (~2-4 Hz) during PASAT with 2 s interval. When analyzed using EEG recording data across all tasks, the most predictive AD patient features were a combination of the first two feature sets. However, the dominant discriminating feature for the majority of AD patients were still the same features as the active state analysis. The results from this small sample size pilot study indicate that although EEG recordings during resting conditions are able to differentiate AD from control subjects, EEG activity recorded during active engagement in cognitive and auditory tasks provide important distinct features, some of which may be among the most predictive discriminating features.
We have developed a novel approach to elucidate several discriminating EEG features of Alzheimer's disease. The approach is based on the use of a variety of continuous wavelet transforms, pairwise statistical tests with multiple comparison correction, and several decision tree algorithms, in order to choose the most prominent EEG features from a single sensor. A pilot study was conducted to record EEG signals from Alzheimer's disease (AD) patients and healthy age-matched control (CTL) subjects using a single dry electrode device during several eyes-closed (EC) and eyes-open (EO) resting conditions. We computed the power spectrum distribution properties and wavelet and sample entropy of the wavelet coefficients time series at scale ranges approximately corresponding to the major brain frequency bands. A predictive index was developed using the results from statistical tests and decision tree algorithms to identify the most reliable significant features of the AD patients when compared to healthy controls. The three most dominant features were identified as larger absolute mean power and larger standard deviation of the wavelet scales corresponding to 4-8 Hz (θ) during EO and lower wavelet entropy of the wavelet scales corresponding to 8-12 Hz (α) during EC, respectively. The fourth reliable set of distinguishing features of AD patients was lower relative power of the wavelet scales corresponding to 12-30 Hz (β) followed by lower skewness of the wavelet scales corresponding to 2-4 Hz (upper δ), both during EO. In general, the results indicate slowing and lower complexity of EEG signal in AD patients using a very easy-to-use and convenient single dry electrode device.
In this article, the Electroencephalography (EEG) signal of the human brain is modeled as the output of stochastic non-linear coupled oscillator networks. It is shown that EEG signals recorded under different brain states in healthy as well as Alzheimer's disease (AD) patients may be understood as distinct, statistically significant realizations of the model. EEG signals recorded during resting eyes-open (EO) and eyes-closed (EC) resting conditions in a pilot study with AD patients and age-matched healthy control subjects (CTL) are employed. An optimization scheme is then utilized to match the output of the stochastic Duffing—van der Pol double oscillator network with EEG signals recorded during each condition for AD and CTL subjects by selecting the model physical parameters and noise intensity. The selected signal characteristics are power spectral densities in major brain frequency bands Shannon and sample entropies. These measures allow matching of linear time varying frequency content as well as non-linear signal information content and complexity. The main finding of the work is that statistically significant unique models represent the EC and EO conditions for both CTL and AD subjects. However, it is also shown that the inclusion of sample entropy in the optimization process, to match the complexity of the EEG signal, enhances the stochastic non-linear oscillator model performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.