Let $G$ be a graph with vertex set $\{1,2,\ldots,n\}$. Its bond lattice, $BL(G)$, is a sublattice of the set partition lattice. The elements of $BL(G)$ are the set partitions whose blocks induce connected subgraphs of $G$. In this article, we consider graphs $G$ whose bond lattice consists only of noncrossing partitions. We define a family of graphs, called triangulation graphs, with this property and show that any two produce isomorphic bond lattices. We then look at the enumeration of the maximal chains in the bond lattices of triangulation graphs. Stanley's map from maximal chains in the noncrossing partition lattice to parking functions was our motivation. We find the restriction of his map to the bond lattice of certain subgraphs of triangulation graphs. Finally, we show the number of maximal chains in the bond lattice of a triangulation graph is the number of ordered cycle decompositions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.