Present study establishes a series of acrylonitrile adducts as an effective adsorption media for removal of ferrous ion from water. Adduct synthesis was carried out following aza-Michael addition reaction between primary aliphatic amines and acrylonitrile under mild conditions. The synthesized products were characterised by FT-IR, ESI-MS and 1 H NMR spectroscopy and the particle size was analysed by DLS measurements. Adsorption isotherm study of the adducts showed prominent results. The positively charged iron ion interacts with negatively charged acrylonitrile adducts and forms a bulky structure which precipitates out from water. The most interesting feature of these compounds is its electron rich property which facilitates effective interaction with the positively charged iron ions present in water and thus imparting high adsorption capacity. Batch experiments were performed to figure out the best adsorption conditions. These studies were used to investigate the effects of various viable characteristics such as initial metal ion concentration, pH and contact time. The adsorption isotherm was well fitted by Langmuir model. The maximum adsorption capacity of acrylonitrile adducts for iron was recorded as 22.65 mg/g.
In this work, five acrylonitrile adducts were screened for antibacterial activity against Gram-positive Bacillus subtilis, Microbial Type Culture Collection and Gene Bank (MTCC 1305) and Gram-negative Escherichia coli (MTCC 443). Synthesis was followed by aza-Michael addition reaction, where the acrylonitrile accepts an electron pair from the respective amines and results in the formation of n-alkyliminobis-propionitrile and n-alkyliminopropionitrile under microwave irradiation. Characterization of the compounds were performed using Fourier Transform Infrared (FTIR), Proton Nuclear Magnetic Resonance (1H NMR) and Electrospray Ionisation Mass Spectrometry (ESI–MS). The particle size characterization was done by Dynamic Light Scattering (DLS) technique. The antibacterial study showed higher inhibition rate for both Gram-positive and Gram-negative bacteria. The antibacterial ability was found to be dose dependent. The minimum inhibitory concentration against both bacteria were found to be 1, 3, 0.4, 1, 3 µl/ml for E. coli and 6, 6, 0.9, 0.5, 5 µl/ml for B. subtilis. Time-kill kinetics evaluation showed that the adducts possess bacteriostatic action. Further it was evaluated for high-throughput in vitro assays to determine the compatibility of the adducts for drug delivery. The haemolytic and thrombolytic activity was analysed against normal mouse erythrocytes. The haemolytic activity showed prominent results, and thereby projecting this acrylonitrile adducts as potent antimicrobial and haemolytic agent.
In this work, five acrylonitrile adducts were screened for antibacterial activity against Gram-positive Bacillus subtilis (MTCC 1305) and Gram-negative Escherichia coli (MTCC 443). Synthesis was followed by aza-Michael addition reaction, where the acrylonitrile accepts an electron pair from the respective amines and results in the formation of n-alkyliminobis-propionitrile and n-alkyliminopropionitrile under microwave irradiation. Characterization of the compounds were performed using FTIR, 1H NMR and ESI-MS. The particle size characterization was done by DLS technique. The antibacterial study showed higher inhibition rate for both Gram-positive and Gram-negative bacteria. The antibacterial ability was found to be dose dependent. The minimum inhibitory concentration against both bacteria were found to be 1, 3, 0.4, 1, 3 µl/ml for E. coli and 6, 6, 0.9, 0.5, 5 µl/ml for B. subtilis. Time-kill kinetics evaluation showed that the adducts possess bacteriostatic action. Further it was evaluated for high-throughput in vitro assays to determine the compatibility of the adducts for drug delivery. The haemolytic and thrombolytic activity was analysed against normal mouse erythrocytes. The haemolytic activity showed prominent results, and thereby projecting this acrylonitrile adducts as potent antimicrobial and haemolytic agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.