In this paper we present a methodology for analyzing polyphonic musical passages comprised by notes that exhibit a harmonically fixed spectral profile (such as piano notes). Taking advantage of this unique note structure we can model the audio content of the musical passage by a linear basis transform and use non-negative matrix decomposition methods to estimate the spectral profile and the temporal information of every note. This approach results in a very simple and compact system that is not knowledge based, but rather learns notes by observation.
WASPAA 2003This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.
ABSTRACTIn this paper we present a methodology for analyzing polyphonic musical passages comprised by notes that exhibit a harmonically fixed spectral profile (such as piano notes). Taking advantage of this unique note structure we can model the audio content of the musical passage by a linear basis transform and use non-negative matrix decomposition methods to estimate the spectral profile and the temporal information of every note. This approach results in a very simple and compact system that is not knowledge-based, but rather learns notes by observation.
Monaural source separation is useful for many real-world applications though it is a challenging problem. In this paper, we study deep learning for monaural speech separation. We propose the joint optimization of the deep learning models (deep neural networks and recurrent neural networks) with an extra masking layer, which enforces a reconstruction constraint. Moreover, we explore a discriminative training criterion for the neural networks to further enhance the separation performance. We evaluate our approaches using the TIMIT speech corpus for a monaural speech separation task. Our proposed models achieve about 3.8⇠4.9 dB SIR gain compared to NMF models, while maintaining better SDRs and SARs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.