A chemically modified electrode was constructed by incorporating manganese (III) tetraphenyl porphyrine into a carbon paste matrix. The modified electrode was used as a sensitive electrochemical sensor for measuring of riboflavin. The constructed electrode exhibited catalytic properties for the electro-oxidation of riboflavin and lowered the over potential for the oxidation of this compound; consequently, the corresponding peak currents of riboflavin increased significantly. The modified electrode showed a near-Nernstian behavior for electro-oxidation of riboflavin hence, it could be a suitable voltammetric sensor for the fast and easy determination of riboflavin. A linear response in concentration range 1.0 × 10 −8 -1.0 × 10 −5 M was obtained with a detection limit of 8.0 × 10 −9 M (S /n = 3) for the determination of riboflavin. The electrode showed long-term stability and the standard deviation of the slope obtained after repeated calibration during a period of 3 months was 3.5% (n = 10). The modified electrode was used for differential pulse voltammetric determination of riboflavin in pharmaceutical and food samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.