Considering nanogels, we have focused our attention on hybrid nanosystems for drug delivery and biomedical purposes. The distinctive strength of these structures is the capability to join the properties of nanosystems with the polymeric structures, where versatility is strongly demanded for biomedical applications. Alongside with the therapeutic effect, a non-secondary requirement of the nanosystem is indeed its biocompatibility. The importance to fulfill this aim is not only driven by the priority to reduce, as much as possible, the inflammatory or the immune response of the organism, but also by the need to improve circulation lifetime, biodistribution, and bioavailability of the carried drugs. In this framework, we have therefore gathered the hybrid nanogels specifically designed to increase their biocompatibility, evade the recognition by the immune system, and overcome the self-defense mechanisms present in the bloodstream of the host organism. The works have been essentially organized according to the hybrid morphologies and to the strategies adopted to fulfill these aims: Nanogels combined with nanoparticles or with liposomes, and involving polyethylene glycol chains or zwitterionic polymers.
Optimum reaction conditions are studied for the regioselective and diastereoselective synthesis of spiro‐isoxazolidines of type (V) or (VII) via 1,3‐dipolar cycloaddition reaction of the stable isatin ketonitrone (III) and various dipolarophiles of type (IV) or (VI).
In this study, we report the realization of drug-loaded smart magnetic nanocarriers constituted by superparamagnetic iron oxide nanoparticles encapsulated in a dual pH- and temperature-responsive poly (N-vinylcaprolactam-co-acrylic acid) copolymer to achieve highly controlled drug release and localized magnetic hyperthermia. The magnetic core was constituted by flower-like magnetite nanoparticles with a size of 16.4 nm prepared by the polyol approach, with good saturation magnetization and a high specific absorption rate. The core was encapsulated in poly (N-vinylcaprolactam-co-acrylic acid) obtaining magnetic nanocarriers that revealed reversible hydration/dehydration transition at the acidic condition and/or at temperatures above physiological body temperature, which can be triggered by magnetic hyperthermia. The efficacy of the system was proved by loading doxorubicin with very high encapsulation efficiency (>96.0%) at neutral pH. The double pH- and temperature-responsive nature of the magnetic nanocarriers facilitated a burst, almost complete release of the drug at acidic pH under hyperthermia conditions, while a negligible amount of doxorubicin was released at physiological body temperature at neutral pH, confirming that in addition to pH variation, drug release can be improved by hyperthermia treatment. These results suggest this multi-stimuli-sensitive nanoplatform is a promising candidate for remote-controlled drug release in combination with magnetic hyperthermia for cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.