In this study, a newly-designed diamine (DA) containing pyridine and carbazole groups was synthesized and the relevant polyamides (PAs) and polyimides (PIs) were prepared by polymerization reaction between the DA monomer and terephthalic acid, adipic acid, and pyromellitic dianhydride. In addition, polymer nanocomposites were prepared through a combination of the synthesized polymers with modified magnetite iron oxide nanoparticles. The synthesized compounds were fully characterized by hydrogen nuclear magnetic resonance (1HNMR), fourier-transform infrared (FTIR), field emitting scanning electron microscopy (FESEM), energy dispersive X-Ray (EDX), Transmission electron microscopy (TEM), Differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA) analyses. All of the synthesized properties of compounds such as thermal stability, viscosity, elimination capability of heavy metals ions adsorption, and antibacterial activity were investigated. Polyamides and PI showed good solubility in aprotic solvents and the viscosity was in the range of 0.72–0.89 dL/g. Also, the glass-transition temperature (Tg) of synthetic polymers was in the range of 214–273°C and 10% weight loss temperatures (T10%) for the synthesized compounds were in the temperature range of 280–492°C in N2, and the percentage of residual ash between 61 and 74%. The adsorption rate of Hg2+, Co2+, Pb2+, Cr2+, and Cd2+ metal ions by PA containing terephthalic acid (PAT) and its nanocomposite (NCPAT) showed that nanocomposite has a better performance compared to PAT. The highest and lowest removal efficiency was related to Hg2+ and Pb2+ ion, respectively. Finally, antibacterial test results against Gram-positive and Gram-negative bacteria showed favorable inhibitory effects of all the synthesized polymers.
A nanocomposite containing imidazolium based on modified silica nanoparticles (polyimidazolium based on nano silica particles [PIZNS]) was prepared to remove nitrate from water. The prepared compounds were fully characterized by Fourier transform infrared, 1 H-NMR, field emission scanning electron microscopy, energy dispersive X-ray (EDX) and thermogravimetric analyzes. The ability of PIZNS in nitrate ions adsorption was tested under different operating conditions. The maximum removal efficiency and adsorption capacity (Q max ) of the PIZNS were obtained 90.56% and 37.73 mg g À1 , respectively (initial nitrate ion concentration of 50 mg/L, at pH = 7, 30 mg adsorbent, contact time of 30 min). To evaluate the selectivity
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.