Objectives. Deep brain stimulation programming for movement disorders requires systematic fine tuning of stimulation parameters to ameliorate tremor and other symptoms while avoiding side effects. DBS programming can be a time-consuming process and requires clinical expertise to assess response to DBS to optimize therapy for each patient. In this study, we describe and evaluate an automated, closed-loop, and patient-specific framework for DBS programming that measures tremor using a smartwatch and automatically changes DBS parameters based on the recommendations from a closed-loop optimization algorithm thus eliminating the need for an expert clinician. Approach. Bayesian optimization which is a sample-efficient global optimization method was used as the core of this DBS programming framework to adaptively learn each patient’s response to DBS and suggest the next best settings to be evaluated. Input from a clinician was used initially to define a maximum safe amplitude, but we also implemented ‘safe Bayesian optimization’ to automatically discover tolerable exploration boundaries. Results. We tested the system in 15 patients (9 with Parkinson’s disease and 6 with essential tremor). Tremor suppression at best automated settings was statistically comparable to previously established clinical settings. The optimization algorithm converged after testing 15.1±0.7 settings when maximum safe exploration boundaries were predefined, and 17.7±4.9 when the algorithm itself determined safe exploration boundaries. Significance. We demonstrate that fully automated DBS programming framework for treatment of tremor is efficient and safe while providing outcomes comparable to that achieved by expert clinicians.
Closed-loop neuromodulation control systems facilitate regulating abnormal physiological processes by recording neurophysiological activities and modifying those activities through feedback loops. Designing such systems will require closed-loop workflows with interoperable modules. Workflow frameworks enable standard modular designs, offering reproducible automated pipelines. But workflow languages and standards limit their aim to executions represented by directed acyclic graphs (DAGs). DAGs require a pre-defined start and end execution step with no cycles, thus preventing the researchers from using the standard workflow languages as-is for neuromodulation control systems which consist of closed-loops. Testing and prototyping closed-loop neuromodulation control systems require in-silico simulations before being integrated into in-vivo experimental setups. In this paper, we present NEXUS, our workflow orchestration framework for distributed analytics systems. NEXUS proposes a Software-Defined Workflows approach, inspired by Software-Defined Networking (SDN), which separates the data flows across the service instances from the control flows. NEXUS enables creating interoperable workflows with closed loops by dynamically defining the workflows in a logically centralized approach, from microservices representing each execution step. The centralized orchestrator of NEXUS facilitates dynamically composing scientific workflows from the service nodes with minimal restrictions. NEXUS further supports composing and managing complex workflows from existing workflows via its orchestrator by representing the workflows as directed hypergraphs (DHGs) rather than DAGs. We build sample workflows for a few closed-loop neuromodulation control systems with NEXUS. We illustrate a seamless execution of neuromodulation control systems by supporting loops in a workflow as the use case of NEXUS. Our evaluations highlight the feasibility, flexibility, performance, and scalability of NEXUS in modeling and executing workflows with closed-loops.
Closed-loop Vagus Nerve Stimulation (VNS) based on physiological feedback signals is a promising approach to regulate organ functions and develop therapeutic devices. Designing closed-loop neurostimulation systems requires simulation environments and computing infrastructures that support i) modeling the physiological responses of organs under neuromodulation, also known as physiological models, and ii) the interaction between the physiological models and the neuromodulation control algorithms. However, existing simulation platforms do not support closed-loop VNS control systems modeling without extensive rewriting of computer code and manual deployment and configuration of programs. The CONTROL-CORE project aims to develop a flexible software platform for designing and implementing closed-loop VNS systems. This paper proposes the software architecture and the elements of the CONTROL-CORE platform that allow the interaction between a controller and a physiological model in feedback. CONTROL-CORE facilitates modular simulation and deployment of closed-loop peripheral neuromodulation control systems, spanning multiple organizations securely and concurrently. CONTROL-CORE allows simulations to run on different operating systems, be developed in various programming languages (such as Matlab, Python, C++, and Verilog), and be run locally, in containers, and in a distributed fashion. The CONTROL-CORE platform allows users to create tools and testbenches to facilitate sophisticated simulation experiments. We tested the CONTROL-CORE platform in the context of closed-loop control of cardiac physiological models, including pulsatile and nonpulsatile rat models. These were tested using various controllers such as Model Predictive Control and Long-Short-Term Memory based controllers. Our wide range of use cases and evaluations show the performance, flexibility, and usability of the CONTROL-CORE platform.INDEX TERMS Closed-loop simulations, neuromodulation control systems, workflows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.