Stroke imposes a long-term neurological disability with limited effective treatments available for neuronal recovery. Transplantation of neural stem cells (NSCs) is reported to improve functional outcomes in the animal models of brain ischemia. However, the use of cell therapy is accompanied by adverse effects, so research is growing to use cell-free extracts such as extracellular vesicles (EVs) for targeting brain diseases. In the current study, male Wistar albino rats (20 months old) were subjected to middle cerebral artery occlusion (MCAO). Then, EVs (30 μg) were injected at 2 hours after stroke onset via an intracerebroventricular (ICV) route. Measurements were done at day 7 post-MCAO. EVs administration reduced lesion volume and steadily improved spontaneous locomotor activity.EVs administration also reduced microgliosis (ionized calcium-binding adaptor molecule 1 (Iba1) + cells) and apoptotic (terminal-deoxynucleotidyl transferase mediated nick end labelling [TUNEL]) positive cells and increased neuronal survival (neuronal nuclear (NeuN) + cells) in the ischemic boundary zone (IBZ). However, it had no effect on neurogenesis within the sub-ventricular zone (SVZ) but decreased cellular migration toward the IBZ (doublecortin (DCX) + cells). The results of this study showed neuroprotective and restorative mechanisms of NSC-EVs administration, which may offer new avenues for therapeutic intervention of brain ischemia. Significance of the study: Based on our results, EVs administration can effectively reduce microglial density and neuronal apoptosis, thereby steadily improves functional recovery after MCAO. These findings provide the beneficial effect of NSC-EVs as a new biological treatment for stroke. K E Y W O R D S extracellular vesicle (EV), ischemic boundary zone (IBZ), middle cerebral artery occlusion (MCAO), neural stem cell (NSC), neurogenesis
Available experimental data suggest that adiponectin and thyroid hormones have biological interaction in vivo. However, the effects of thyroid hormones on adipose adiponectin gene expression in thyroid dysfunction are unclear. We induced hyper- (HYPER) and hypothyroidism (HYPO) by daily administration of a 12 mg/l of levothyroxine and 250 mg/l of methimazole in drinking water of rats, respectively, for 42 days. The white adipose tissues and serum sample were taken on days 15, 28, 42 and also 2 weeks after treatment cessation. Analysis of adiponectin gene expression was performed by real-time PCR and 2(-ΔΔct) method. The levels of adipose tissue adiponectin mRNA in the HYPO rats were decreased during the 6-week treatment when compared to control rats (<0.05) and were increased significantly 2 weeks after HYPO cessation (P < 0.05). This decline in adiponectin gene expression occurred in parallel with a decrease in T3, T4, fT3 and fT4 concentrations (P < 0.05). In opposite to HYPO rats, adipose adiponectin gene expression was increased in HYPER rats during the 6-week treatment in parallel with an increase the thyroid hormones concentrations (P < 0.05), and its expression was decreased 2 weeks after HYPER cessation (P < 0.05). Adiponectin gene expression levels showed significant negative correlations with concentrations of LDL (HYPO; r = -0.806, P = 0.001 and HYPER; r = -0.749, P = 0.002), triglyceride (HYPO; r = -0.825, P = 0.001 and HYPER; r = -0.824, P = 0.001) and significant positive correlations with concentrations of glucose (HYPO; r = 0.674, P = 0.004 and HYPER; r = 0.866, P = 0.001) and HDL (HYPO; r = 0.755, P = 0.001 and HYPER; r = 0.839, P = 0.001). The current study provides evidence that adiponectin gene expression in adipose tissue is regulated by thyroid hormones at the translation level and that lipid and carbohydrate disturbances in a patient with thyroid dysfunction may be, in part, due to adiponectin gene expression changes.
Spinal cord injury (SCI) is a devastating clinical problem that can lead to permanent motor dysfunction. Fingolimod (FTY720) is a sphingosine structural analogue, and recently, its therapeutic benefits in SCI have been reported. The present study aimed to evaluate the therapeutic efficacy of fingolimod‐incorporated poly lactic‐co‐glycolic acid (PLGA) nanoparticles (nanofingolimod) delivered locally together with neural stem/progenitor cells (NS/PCs) transplantation in a mouse model of contusive acute SCI. Fingolimod was encapsulated in PLGA nanoparticles by the emulsion–evaporation method. Mouse NS/PCs were harvested and cultured from embryonic Day 14 (E14) ganglionic eminences. Induction of SCI was followed by the intrathecal delivery of nanofingolimod with and without intralesional transplantation of PuraMatrix‐encapsulated NS/PCs. Functional recovery, injury size and the fate of the transplanted cells were evaluated after 28 days. The nanofingolimod particles represented spherical morphology. The entrapment efficiency determined by UV–visible spectroscopy was approximately 90%, and the drug content of fingolimod loaded nanoparticles was 13%. About 68% of encapsulated fingolimod was slowly released within 10 days. Local delivery of nanofingolimod in combination with NS/PCs transplantation led to a stronger improvement in neurological functions and minimized tissue damage. Furthermore, co‐administration of nanofingolimod and NS/PCs not only increased the survival of transplanted cells but also promoted their fate towards more oligodendrocytic phenotype. Our data suggest that local release of nanofingolimod in combination with three‐dimensional (3D) transplantation of NS/PCs in the acute phase of SCI could be a promising approach to restore the damaged tissues and improve neurological functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.