We define a distance metric between partitions of a graph using machinery from optimal transport. Our metric is built from a linear assignment problem that matches partition components, with assignment cost proportional to transport distance over graph edges. We show that our distance can be computed using a single linear program without precomputing pairwise assignment costs and derive several theoretical properties of the metric. Finally, we provide experiments demonstrating these properties empirically, specifically focusing on the metric's value for new problems in ensemble-based analysis of political districting plans.
We define a distance metric between partitions of a graph using machinery from optimal transport. Our metric is built from a linear assignment problem that matches partition components, with assignment cost proportional to transport distance over graph edges. We show that our distance can be computed using a single linear program without precomputing pairwise assignment costs and derive several theoretical properties of the metric. Finally, we provide experiments demonstrating these properties empirically, specifically focusing on its value for new problems in ensemble-based analysis of political districting plans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.