This paper is motivated by the following question: what are the unavoidable induced subgraphs of graphs with large treewidth? Aboulker et al. made a conjecture which answers this question in graphs of bounded maximum degree, asserting that for all k and ∆, every graph with maximum degree at most ∆ and sufficiently large treewidth contains either a subdivision of the (k × k)-wall or the line graph of a subdivision of the (k × k)-wall as an induced subgraph. We prove two theorems supporting this conjecture, as follows.1. For t ≥ 2, a t-theta is a graph consisting of two nonadjacent vertices and three internally disjoint paths between them, each of length at least t. A t-pyramid is a graph consisting of a vertex v, a triangle B disjoint from v and three paths starting at v and disjoint otherwise, each joining v to a vertex of B, and each of length at least t. We prove that for all k, t and ∆, every graph with maximum degree at most ∆ and sufficiently large treewidth contains either a t-theta, or a t-pyramid, or the line graph of a subdivision of the (k × k)-wall as an induced subgraph. This affirmatively answers a question of Pilipczuk et al. asking whether every graph of bounded maximum degree and sufficiently large treewidth contains either a theta or a triangle as an induced subgraph (where a theta means a t-theta for some t ≥ 2). 2. A subcubic subdivided caterpillar is a tree of maximum degree at most three whose all vertices of degree three lie on a path. We prove that for every ∆ and subcubic subdivided caterpillar T , every graph with maximum degree at most ∆ and sufficiently large treewidth contains either a subdivision of T or the line graph of a subdivision of T as an induced subgraph.
We define a distance metric between partitions of a graph using machinery from optimal transport. Our metric is built from a linear assignment problem that matches partition components, with assignment cost proportional to transport distance over graph edges. We show that our distance can be computed using a single linear program without precomputing pairwise assignment costs and derive several theoretical properties of the metric. Finally, we provide experiments demonstrating these properties empirically, specifically focusing on the metric's value for new problems in ensemble-based analysis of political districting plans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.