No abstract
In the last decade, computational approaches to graph partitioning have made a major impact in the analysis of political redistricting, including in U.S. courts of law. Mathematically, a districting plan can be viewed as a balanced partition of a graph into connected subsets. Examining a large sample of valid alternative districting plans can help us recognize gerrymandering against an appropriate neutral baseline. One algorithm that is widely used to produce random samples of districting plans is a Markov chain called recombination (or ReCom), which repeatedly fuses adjacent districts, forms a spanning tree of their union, and splits that spanning tree with a balanced cut to form new districts. One drawback is that this chain's stationary distribution has no known closed form when there are three or more districts. In this paper, we modify ReCom slightly to give it a property called reversibility, resulting in a new Markov chain, RevReCom. This new chain converges to the simple, natural distribution that ReCom was originally designed to approximate: a plan's stationary probability is proportional to the product of the number of spanning trees of each district. This spanning tree score is a measure of district "compactness" (or shape) that is also aligned with notions of community structure from network science. After deriving the steady state formally, we present diagnostic evidence that the convergence is efficient enough for the method to be practically useful, giving high-quality samples for full-sized problems within an hour. In addition to the primary application of benchmarking of redistricting plans (i.e., describing a normal range for statistics), this chain can also be used to validate other methods that target the spanning tree distribution.
Regular irradiation of indoor environments with ultraviolet C (UVC) light has become a regular task for many indoor settings as a result of COVID-19, but current robotic systems attempting to automate it suffer from high costs and inefficient irradiation. In this paper, we propose a purpose-made inexpensive robotic platform with off-the-shelf components and standard navigation software that, with a novel algorithm for finding optimal irradiation locations, addresses both shortcomings to offer affordable and efficient solutions for UVC irradiation. We demonstrate in simulations the efficacy of the algorithm and show a prototypical run of the autonomous integrated robotic system in an indoor environment. In our sample instances, our proposed algorithm reduces the time needed by roughly 30% while it increases the coverage by a factor of 35% (when compared to the best possible placement of a static light).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.