Neuroserpin is a serine protease inhibitor widely expressed in the developing and adult nervous systems and implicated in the regulation of proteases involved in processes such as synaptic plasticity, neuronal migration and axogenesis. We have analysed the effect of neuroserpin on growth factorinduced neurite outgrowth in PC12 cells. We show that small changes in neuroserpin expression result in changes to the number of cells extending neurites and total neurite length following NGF treatment. Increased expression of neuroserpin resulted in a decrease in the number of cells extending neurites and a reduction in total free neurite length whereas reduced levels of neuroserpin led to a small increase in the number of neurite extending cells and a significant increase in total free neurite length compared to the parent cell line. Neuroserpin also altered the response of PC12 cells to bFGF and EGF treatment. Neuroserpin was localised to dense cored secretory vesicles in PC12 cells but was unable to complex with its likely enzyme target, tissue plasminogen activator at the acidic pH found in these vesicles. These data suggest that modulation of neuroserpin levels at the extending neurite growth cone may play an important role in regulating axonal growth.
Two cDNAs encoding the serine protease inhibitor (serpin) neuroserpin were cloned from a rat pituitary cDNA library (rNS-1, 2922 bp; rNS-2, 1599 bp). In situ hybridization histochemistry showed neuroserpin transcripts in the intermediate, anterior and posterior lobes of the pituitary gland and medullary cells in the adrenal gland. Expression of rNS-1 mRNA was restricted to selected cells in the pituitary gland. Analysis of purified secretory-granule fractions from pituitary and adrenal tissues indicated that neuroserpin was found in dense-cored secretory granules. This result suggested that endocrine neuroserpin may regulate intragranular proteases or inhibit enzymes following regulated secretion. To investigate the function of neuroserpin in endocrine tissues we established stable anterior pituitary AtT-20 cell lines expressing neuroserpin. Cells with increased levels of neuroserpin responded by extending neurite-like processes. Extracellular proteolysis by serine protease plasminogen activators has been suggested to regulate neurite outgrowth. As neuroserpin inhibits tissue plasminogen activator (tPA) in vitro, we measured plasminogen-activator levels. Zymographic analysis indicated that AtT-20 cells synthesized and secreted a plasminogen activator identical in size to tPA. A higher-molecular-mass tPA-neuroserpin complex was also observed in AtT-20-cell conditioned culture medium. tPA levels were similar in parent AtT-20 cells and a stable cell line with increased levels of neuroserpin. There was no accumulation of a tPA-neuroserpin complex. Together these results identify endocrine cells as an important source of neuroserpin. Moreover they suggest that neuroserpin is released from dense-cored secretory granules to regulate cell-extracellular matrix interactions through a mechanism that may not directly involve tPA.
Two cDNAs encoding the serine protease inhibitor (serpin) neuroserpin were cloned from a rat pituitary cDNA library (rNS-1, 2922 bp; rNS-2, 1599 bp). In situ hybridization histochemistry showed neuroserpin transcripts in the intermediate, anterior and posterior lobes of the pituitary gland and medullary cells in the adrenal gland. Expression of rNS-1 mRNA was restricted to selected cells in the pituitary gland. Analysis of purified secretory-granule fractions from pituitary and adrenal tissues indicated that neuroserpin was found in dense-cored secretory granules. This result suggested that endocrine neuroserpin may regulate intragranular proteases or inhibit enzymes following regulated secretion. To investigate the function of neuroserpin in endocrine tissues we established stable anterior pituitary AtT-20 cell lines expressing neuroserpin. Cells with increased levels of neuroserpin responded by extending neurite-like processes. Extracellular proteolysis by serine protease plasminogen activators has been suggested to regulate neurite outgrowth. As neuroserpin inhibits tissue plasminogen activator (tPA) in vitro, we measured plasminogen-activator levels. Zymographic analysis indicated that AtT-20 cells synthesized and secreted a plasminogen activator identical in size to tPA. A higher-molecular-mass tPA-neuroserpin complex was also observed in AtT-20-cell conditioned culture medium. tPA levels were similar in parent AtT-20 cells and a stable cell line with increased levels of neuroserpin. There was no accumulation of a tPA-neuroserpin complex. Together these results identify endocrine cells as an important source of neuroserpin. Moreover they suggest that neuroserpin is released from dense-cored secretory granules to regulate cell-extracellular matrix interactions through a mechanism that may not directly involve tPA.
Serine proteases play essential roles in a wide variety of cellular processes in endocrine cells. There is a growing interest in the roles of serine protease inhibitors, or serpins, as key regulators of their activity. We have cloned two neuroserpin cDNAs from a rat pituitary cDNA library and confirmed tissue plasminogen activator as a potential target for this inhibitor. We show that neuroserpin transcripts are expressed by endocrine cells in the adrenal and pituitary glands and that immunoreactive neuroserpin is stored in densely cored secretory granules in these cells. Overexpression of neuroserpin in an anterior pituitary corticotroph cell line results in the extension of neurite-like processes, suggesting that neuroserpin may play a role in cell communication, cell adhesion, and/or cell migration.
Serine protease inhibitors (serpins) are a family of structurally related proteins that play key roles in the regulation of proteolytic homeostasis. We have isolated a novel intracellular serpin, termed raPIT5a, from the rat pituitary gland. Northern blot analysis indicated raPIT5a mRNA expression in a range of tissues, including the adrenal gland and the brain. In situ hybridisation histochemistry revealed raPIT5a mRNA expression in specific cell populations in the rat pituitary gland, adrenal gland, and pancreas. Based on sequence similarities to other intracellular serpins, we predicted raPIT5a may inhibit the pro-apoptotic serine protease granzyme B. We confirmed this experimentally by identification of a stable inhibitory complex between granzyme B and raPIT5a. To determine whether granzyme B or granzyme B-related enzymes were expressed in the rat pituitary gland, we performed PCR using primers predicted to amplify granzyme B and two other published granzyme sequences. We identified rat natural killer protease-1 (RNKP-1), the rat homologue of granzyme B, and a novel putative serine protease highly similar to granzyme-like protein III (GLP III), which we termed GLP IIIa. These data suggest raPIT5a may regulate apoptosis in the pituitary by inhibition of granzyme B or GLP IIIa, or members of the caspase enzyme family which have similar substrate specificity. We have also identified expression of a second serpin, called neuroserpin, in pituitary tissue and found that it alters the morphology of the AtT20 corticotrope cell line, presumably through changes in cell adhesion. These results identify new roles for serpins in pituitary cell function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.