Vascular calcification is a severe consequence of several pathological processes with a lack of effective therapy. Recent studies suggest that circulating and resident mesenchymal stem cells (MSC) contribute to the osteogenic program of vascular calcification. Molecular mechanisms underlying MSC osteogenic potential and differentiation remain, however, sparsely explored. We investigated a role for the complement receptor C5aR in these processes. We found that expression of C5aR was upregulated upon differentiation of human MSC to osteoblasts. C5aR inhibition by silencing and specific antagonist impaired osteogenic differentiation. We demonstrate that C5aR expression upon MSC differentiation was regulated by the multifunctional urokinase receptor (uPAR). uPAR targeting by siRNA resulted in complete abrogation of C5aR expression and consequently in the inhibition of MSC-osteoblast differentiation. We elucidated the NFkB pathway as the mechanism utilized by the uPAR-C5aR axis. MSC treatment with the NFkB inhibitor completely blocked the differentiation process. Nuclear translocation of the p65 RelA component of the NFkB complex was induced under osteogenic conditions and impaired by the inhibition of uPAR or C5aR. Dual-luciferase reporter assays demonstrated enhanced NFkB signaling upon MSC differentiation, whereas uPAR and C5aR downregulation lead to inhibition of the NFkB activity. We show involvement of the Erk1/2 kinase in this cascade. In vivo studies in a uPAR/LDLR double knockout mouse model of diet-induced atherosclerosis revealed impaired C5aR expression and calcification in aortic sinus plaques in uPAR -/ -/LDLR -/ -versus uPAR + / + /LDLR -/ -control animals. These results suggest that uPAR-C5aR axis via the underlying NFkB transcriptional program controls osteogenic differentiation with functional impact on vascular calcification in vivo.
Bone remodeling is a dynamic process based on a fine-tuned balance between formation and degradation of bone. Osteoblasts (OBLs) are responsible for bone formation and bone resorption is mediated by osteoclasts (OCLs). The mechanisms regulating the OBL-OCL balance are critical in health and disease; however, they are still far from being understood. We reported recently that the multifunctional urokinase receptor (uPAR) mediates osteogenic differentiation of mesenchymal stem cells (MSCs) to OBLs and vascular calcification in atherosclerosis. Here, we address the question of whether uPAR may also be engaged in regulation of osteoclastogenesis. We show that uPAR mediates this process in a dual fashion. Thus, uPAR affected OBL-OCL interplay. We observed that osteoclastogenesis was significantly impaired in co-culture of monocyte-derived OCLs and in OBLs derived from MSCs lacking uPAR. We show that expression and release, from OBLs, of macrophage colony-stimulating factor (M-CSF), which is indispensable for OCL differentiation, was inhibited by uPAR loss. We further found that uPAR, on the other hand, controlled formation, differentiation, and functional properties of macrophage-derived OCLs. Expression of osteoclastogenic markers, such as tartrate-resistant acid phosphatase (TRAP) and cathepsin K, was impaired in OCLs derived from uPAR-deficient macrophages. The requirement of uPAR for osteoclastogenesis was further confirmed by immunocytochemistry and in bone resorption assay. We provide evidence that the underlying signaling mechanisms involve uPAR association with the M-CSF binding receptor c-Fms followed by c-Fms phosphorylation and activation of the PI3K/Akt/NF-kB pathway in OCLs. We further show that uPAR uses this pathway to regulate a balance between OCL differentiation, apoptosis, and cell proliferation. Our study identified uPAR as an important and multifaceted regulator of OBL-OCL molecular interplay that may serve as an attractive target in bone disease and ectopic calcification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.