Saporin, a type I ribosome-inactivating protein produced by the soapwort plant Saponaria officinalis belongs to a multigene family that encodes its several isoforms. The saporin seed isoform 6 has significantly higher N-glycosidase and cytotoxic activities compared with the seed isoform 5, although the two have identical active sites. In the present study, we have investigated the contribution of non-conservative amino acid changes outside the active sites of these isoforms towards their differential catalytic activity. The saporin 6 residues Lys134, Leu147, Phe149, Asn162, Thr188 and Asp196 were replaced by the corresponding saporin 5 residues, Gln134, Ser147, Ser149, Asp162, Ile188 and Asn196, to generate six variants of saporin 6, K134Q, L147S, F149S, N162D, T188I and D196N. By functional characterization, we show that the change in amino acid Asn162 in saporin 6 to aspartic acid residue of saporin 5 contributes mainly to the lower catalytic activity of saporin 5 compared with saporin 6. The non-involvement of other non-conservative amino acids in the differential catalytic activity of these isoforms was confirmed with the help of the double mutations N162D/K134Q, N162D/L147S, N162D/F149S, N162D/T188I and N162D/D196N.
A major process of iron homeostasis in whole-body iron metabolism is the release of iron from the macrophages of the reticuloendothelial system. Macrophages recognize and phagocytose senescent or damaged erythrocytes. Then, they process the heme iron, which is returned to the circulation for reutilization by red blood cell precursors during erythropoiesis. The amount of iron released, compared to the amount shunted for storage as ferritin, is greater during iron deficiency. A currently accepted model of iron release assumes a passive-gradient with free diffusion of intracellular labile iron (Fe2+) through ferroportin (FPN), the transporter on the plasma membrane. Outside the cell, a multi-copper ferroxidase, ceruloplasmin (Cp), oxidizes ferrous to ferric ion. Apo-transferrin (Tf), the primary carrier of soluble iron in the plasma, binds ferric ion to form mono-ferric and di-ferric transferrin. According to the passive-gradient model, the removal of ferrous ion from the site of release sustains the gradient that maintains the iron release. Subcellular localization of FPN, however, indicates that the role of FPN may be more complex. By experiments and mathematical modeling, we have investigated the detailed mechanism of iron release from macrophages focusing on the roles of the Cp, FPN and apo-Tf. The passive-gradient model is quantitatively analyzed using a mathematical model for the first time. A comparison of experimental data with model simulations shows that the passive-gradient model cannot explain macrophage iron release. However, a facilitated-transport model associated with FPN can explain the iron release mechanism. According to the facilitated-transport model, intracellular FPN carries labile iron to the macrophage membrane. Extracellular Cp accelerates the oxidation of ferrous ion bound to FPN. Apo-Tf in the extracellular environment binds to the oxidized ferrous ion, completing the release process. Facilitated-transport model can correctly predict cellular iron efflux and is essential for physiologically relevant whole-body model of iron metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.