Significant progress has been achieved for the development of novel anti-viral drugs in the recent years. Large numbers of these newly developed drugs belong to three groups of compounds, nucleoside analogues, thymidine kinase-dependent nucleotide analogues and specific viral enzyme inhibitors. It has been found that the natural products, like plant extract, plant-derived compounds (phytochemicals) and so on, as well as traditional medicines, like Ayurvedic, traditional Chinese medicine (TCM), Chakma medicines and so on, are the potential sources for potential and novel anti-viral drugs based on different in vitro and in vivo approaches. In this chapter some of these important approaches utilised in the drug discovery process of potential candidate(s) for anti-viral agents are being discussed. The key conclusion is that natural products are one of the most important sources of novel anti-viral agents.
The aim of this study was to evaluate the antiviral potential of methanolic extract (ME) of Achyranthes aspera, an Indian folk medicine and one of its pure compound oleanolic acid (OA) against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2). The ME possessed weak anti-herpes virus activity (EC50 64.4μg/ml for HSV-1 and 72.8μg/ml for HSV-2). While OA exhibited potent antiherpesvirus activity against both HSV-1 (EC50 6.8μg/ml) and HSV-2 (EC50 7.8μg/ml). The time response study revealed that the antiviral activity of ME and OA is highest at 2-6h post infection. The infected and drug-treated peritoneal macrophage at specific time showed increased level of pro-inflammatory cytokines (IL6 and IL12). Further, the PCR of DNA from infected cultures treated with ME and OA, at various time intervals, failed to show amplification at 48-72h, similar to that of HSV infected cells treated with acyclovir, indicating that the ME and OA probably inhibit the early stage of multiplication (post infection of 2-6h). Thus, our study demonstrated that ME and OA have good anti-HSV activity, with SI values of 12, suggesting the potential use of this plant.
BackgroundViral infections, particularly the infections caused by herpes simplex virus (HSV), represent one of the most serious public health concerns globally because of their devastating impact. The aim of this study was to evaluate the antiviral potential of methanolic crude extract of an ethnomedicine Mallotus peltatus, its active fraction and pure compound, against HSV-1 F and HSV-2 G.ResultThe cytotoxicity (CC50, the concentration of 50% cellular toxicity), antiviral effective concentration (EC50, the concentration required to achieve 50% protection against virus-induced cytopathic effect), plaque reduction and the selectivity index (SI, the ratio of CC50 and EC50) was determined. Results showed that the crude methanolic extract of M. peltatus possessed weak anti-HSV activity. In contrast, the active fraction A and isolated ursolic acid from fraction A exhibited potent antiherpesvirus activity against both HSV-1 (EC50 = 7.8 and 5.5 μg/ml; SI = 22.3 and 20) and HSV-2 (EC50 = 8.2 and 5.8 μg/ml, and SI = 21.2 and 18.97). The fraction A and isolated ursolic acid (10 μg/ml) inhibited plaque formation of HSV-1 and HSV-2 at more than 80% levels, with a dose dependent antiviral activity, compared to acyclovir. The time response study revealed that the anti-HSV activity of fraction A and isolated ursolic acid is highest at 2–5 h post-infection. Moreover, the time kinetics study by indirect immunofluorescence assay showed a characteristic pattern of small foci of single fluorescent cells in fraction A- treated virus infected cells at 2 h and 4 h post-infection, suggesting drug inhibited viral dissemination. Further, the PCR study with infected cell cultures treated with fraction A and isolated ursolic acid at various time intervals, failed to show amplification at 48–72 h, like acyclovir treated HSV-infected cells. Moreover, fraction A or isolated ursolic acid showed no interaction in combination with acyclovir.ConclusionThis study revealed that bioactive fraction A and isolated ursolic acid of M. peltatus has good anti-HSV activity, probably by inhibiting the early stage of multiplication (post-infection of 0–5 h), with SI value of 20, suggesting its potential use as anti-HSV agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.