BackgroundWasp venom is a complex mixture containing proteins, enzymes and small molecules, including some of the most dangerous allergens. The greater banded wasp (Vespa tropica) is well-known for its lethal venom, whose one of the major components is a hyaluronidase (HAase). It is believed that the high protein proportion and activity of this enzyme is responsible for the venom potency.MethodsIn the present study, cDNA cloning, sequencing and 3D-structure of Vespa tropica venom HAase were described. Anti-native HAase antibody was used for neutralization assay.ResultsTwo isoforms, VesT2a and VesT2b, were classified as members of the glycosidase hydrolase 56 family with high similarity (42–97 %) to the allergen venom HAase. VesT2a gene contained 1486 nucleotide residues encoding 357 amino acids whereas the VesT2b isoform consisted of 1411 residues encoding 356 amino acids. The mature VesT2a and VesT2b are similar in mass and pI after prediction. They are 39119.73 Da/pI 8.91 and 39571.5 Da/pI 9.38, respectively. Two catalytic residues in VesT2a, Asp107 and Glu109 were substituted in VesT2b by Asn, thus impeding enzymatic activity. The 3D-structure of the VesT2s isoform consisted of a central core (α/β)7 barrel and two disulfide bridges. The five putative glycosylation sites (Asn79, Asn99, Asn127, Asn187 and Asn325) of VesT2a and the three glycosylation sites (Asn1, Asn66 and Asn81) in VesT2b were predicted. An allergenic property significantly depends on the number of putative N-glycosylation sites. The anti-native HAase serum specifically recognized to venom HAase was able to neutralize toxicity of V. tropica venom. The ratio of venom antiserum was 1:12.ConclusionsThe wasp venom allergy is known to cause life-threatening and fatal IgE-mediated anaphylactic reactions in allergic individuals. Structural analysis was a helpful tool for prediction of allergenic properties including their cross reactivity among the vespid HAase.
Heteroscorpine-1 (HS-1) was identified as a member of the scorpine family. HS-1 shows insecticidal activities, exhibiting a low median lethal dose (LD50) in mealworm (Tenebrio molitor L.) and inhibitory activities against Bacillus subtilis, Klebsiella pneumoniae, and Pseudomonas aeruginosa. In this study, a recombinant HS-1 (rHS-1) was produced by overexpression in E. coli. A large yield of product was obtained. The structure of purified rHS-1 was confirmed through mass spectrometry. Both anti-crude venom and anti-rHS-1 antibodies specifically recognized rHS-1, suggesting its structural similarity. Reactivated rHS-1 caused roughening and blebbing of bacterial cell surfaces. It showed higher activity than that of pre-refolded protein. Antisera raised against a partially purified and mis- or unfolded peptide can inhibit relevant bioactivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.