We study the effect of the microenvironment on writing chemical patterns into spirothiopyran monolayers over large areas in a single step with light. Surfaces functionalized with photoresponsive spirothiopyran are fabricated by chemically modifying amine-terminated monolayers. The merocyanine isomer selectively participates in a thiol-Michael addition reaction with maleimide-functionalized molecules, rendering these surfaces ideal for fast, mask-less direct writing. The local microenvironment of spirothiopyran is found to strongly influence the kinetics of photoswitching. The quantum yield of ring opening is found to be 17 times faster for spirothiopyran surrounded by a locally charged environment rich in guanidinium diluent molecules as compared to a closed-packed monolayer without diluents. Hydrophilic environments are also found to improve the kinetics of ring closing. Optimization of the diluent concentration leads to dramatic improvements in both contrast and yield of direct writing. This enables the monolayer to be used for maskless two-color photopatterning in which spatial control over patterning is obtained by varying the relative intensity of incident UV and green light. These experiments demonstrate the capacity of spirothiopyran monolayers to serve as a versatile toolbox for rapid, large-area surface functionalization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.