Halophilic proteins have greater abundance of acidic over basic and very low bulky hydrophobic residues. Classical electrostatic stabilization was suggested as the key determinant for halophilic adaptation of protein. However, contribution of specific electrostatic interactions (i.e. salt-bridges) to overall stability of halophilic proteins is yet to be understood. To understand this, we use Adaptive-Poison-Boltzmann-Solver Methods along with our home-built automation to workout net as well as associated component energy terms such as desolvation energy, bridge energy and background energy for 275 salt-bridges from 20 extremely halophilic proteins. We then perform extensive statistical analysis on general and energetic attributes on these salt-bridges. On average, 8 salt-bridges per 150 residues protein were observed which is almost twice than earlier report. Overall contributions of salt-bridges are −3.0 kcal mol−1. Majority (78%) of salt-bridges in our dataset are stable and conserved in nature. Although, average contributions of component energy terms are equal, their individual details vary greatly from one another indicating their sensitivity to local micro-environment. Notably, 35% of salt-bridges in our database are buried and stable. Greater desolvation penalty of these buried salt-bridges are counteracted by stable network salt-bridges apart from favorable equal contributions of bridge and background terms. Recruitment of extensive network salt-bridges (46%) with a net contribution of −5.0 kcal mol−1 per salt-bridge, seems to be a halophilic design wherein favorable average contribution of background term (−10 kcal mol−1) exceeds than that of bridge term (−7 kcal mol−1). Interiors of proteins from halophiles are seen to possess relatively higher abundance of charge and polar side chains than that of mesophiles which seems to be satisfied by cooperative network salt-bridges. Overall, our theoretical analyses provide insight into halophilic signature in its specific electrostatic interactions which we hope would help in protein engineering and bioinformatics studies.
While an FDA approved drug Ivermectin was reported to dramatically reduce the cell line of SARS-CoV-2 by ∼5000 folds within 48 h, the precise mechanism of action and the COVID-19 molecular target involved in interaction with this in-vitro effective drug are unknown yet. Among 12 different COVID-19 targets along with Importin-α studied here, the RNA dependent RNA polymerase (RdRp) with RNA and Helicase NCB site show the strongest affinity to Ivermectin amounting −10.4 kcal/mol and −9.6 kcal/mol, respectively, followed by Importin-α with −9.0 kcal/mol. Molecular dynamics of corresponding protein-drug complexes reveals that the drug bound state of RdRp with RNA has better structural stability than the Helicase NCB site and Importin-α, with MM/PBSA free energy of −187.3 kJ/mol, almost twice that of Helicase (−94.6 kJ/mol) and even lower than that of Importin-α (−156.7 kJ/mol). The selectivity of Ivermectin to RdRp is triggered by a cooperative interaction of RNA-RdRp by ternary complex formation. Identification of the target and its interaction profile with Ivermectin can lead to more powerful drug designs for COVID-19 and experimental exploration.
SARS-CoV-2, a novel coronavirus causing overwhelming death and infection worldwide, has emerged as a pandemic. Compared to its predecessor SARS-CoV, SARS-CoV-2 is more infective for being highly contagious and exhibiting tighter binding with host angiotensin-converting enzyme 2 (hACE-2). The entry of the virus into host cells is mediated by the interaction of its spike protein with hACE-2. Thus, a peptide that has a resemblance to hACE-2 but can overpower the spike protein−hACE-2 interaction will be a potential therapeutic to contain this virus. The non-interacting residues in the receptor-binding domain of hACE-2 have been mutated to generate a library of 136 new peptides. Out of this library, docking and virtual screening discover seven peptides that can exert a stronger interaction with the spike protein than hACE-2. A peptide derived from simultaneous mutation of all the non-interacting residues of hACE-2 yields almost three-fold stronger interaction than hACE-2 and thus turns out here to be the best peptide inhibitor of the novel coronavirus. The binding of the best peptide inhibitor with the spike protein is explored further by molecular dynamics, free energy, and principal component analysis, which demonstrate its efficacy compared to hACE-2. The delivery of the screened inhibitors with nanocarriers like metal−organic frameworks will be worthy of further consideration to boost their efficacy.
Salt-bridge and network salt-bridge are specific electrostatic interactions that contribute to the overall stability of proteins. In hierarchical protein folding model, these interactions play crucial role in nucleation process. The advent and growth of protein structure database and its availability in public domain made an urgent need for context dependent rapid analysis of salt-bridges. While these analyses on single protein is cumbersome and time-consuming, batch analyses need efficient software for rapid topological scan of a large number of protein for extracting details on (i) fraction of salt-bridge residues (acidic and basic). (ii) Chain specific intra-molecular salt-bridges, (iii) inter-molecular salt-bridges (protein-protein interactions) in all possible binary combinations (iv) network salt-bridges and (v) secondary structure distribution of salt-bridge residues. To the best of our knowledge, such efficient software is not available in public domain. At this juncture, we have developed a program i.e. SBION which can perform all the above mentioned computations for any number of protein with any number of chain at any given distance of ion-pair. It is highly efficient, fast, error-free and user friendly. Finally we would say that our SBION indeed possesses potential for applications in the field of structural and comparative bioinformatics studies.AvailabilitySBION is freely available for non-commercial/academic institutions on formal request to the corresponding author (akbanerjee@biotech.buruniv.ac.in).
All chemicals were bought from Sigma Aldrich Chemical Company, USA and E. Merck India Ltd, India. All chemical reactions were carried out in oven dried apparatus and solvents used were dried and distilled. Column chromatography was carried out on silica gel (100-200 mess). Reactions were monitored on TLC, using silica gel 60F254 aluminium plates and visualized under ultraviolet light at 254 nm. Melting points were recorded on electro thermal apparatus. NMR spectra were recorded on BRUKER-AV400 spectrometer (Bruker Co., Faellanden, Switzerland) in DMSO-d6 ( 1 H at 400 MHz and 13 C at 100 MHz). Chemical shifts (δ) are expressed in parts per million (ppm) and J (Coupling constant)values in Hz.Multiplicities are indicated as s (singlet), d (doublet), dd (doublet of doublets), t (triplet), q (quartet), m (multiplet) and br (broad spectrum). Mass spectra were recorded on Micromass Q-Tof (ESI-HRMS). The elemental analyses were performed for all compounds on a Perkin-Elmer 240-C analyses equipment. S1.2. General synthesis of diarylpyrimidine derivatives (1-6)A mixture of different types of aromatic amines (3.37 mmol) and K2CO3 (3.37 mmol) in 10 mL DMF was stirred at room temperature for 15 min. 2, 4-dichloropyrimidine (3.37 mmol) was added and the mixture was stirred at reflux for 4-6 h. Reaction was monitored on TLC for its completion. The solvent was evaporated and residue was partitioned between water
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.