In this work, we present a thorough procedure for estimating the Flory-Huggins χ-parameter for use in atomistic and mesoscale molecular simulations in computational materials science. In particular, we propose improvements upon traditional Flory-Huggins theory by implementing a Connolly volume normalization (CVN). We apply this technique to several test systems, including a blend of poly (epichlorohydrin) and poly (methyl acrylate), a blend of polyethylene glycol and poly (methyl methacrylate), a blend of polystyrene and deuterated polystyrene, and three molecular-weight variants (monomer, dimer, and trimer) of a triblock copolymer for use in multicompartment micelle applications. Our results demonstrate that the newly developed procedure offers high accuracy and efficiency in predicting the Flory-Huggins χ-parameter for miscibility analysis compared to traditional experimental and computational methods. There are still several factors that cause the magnitude of the χ-parameter to vary between simulations performed on molecular species with the same identity but different degrees of polymerization; although we discuss possible explanations for these factors, this is nonetheless a primary focus for further exploration into this new methodology.
The high electron affinity of fullerene C coupled with the rich chemistry of carbon makes it a promising material for cathode applications in lithium-ion batteries. Since boron has one electron less than carbon, the presence of boron on C cages is expected to generate electron deficiency in C , and thereby to enhance its electron affinity. By using density functional theory (DFT), we studied the redox potentials and electronic properties of C and C B. We have found that doping C with one boron atom results in a substantial increase in redox potential from 2.462 V to 3.709 V, which was attributed to the formation of an open shell system. We also investigated the redox and electronic properties of C B functionalized with various redox-active oxygen containing functional groups (OCFGs). For the combination of functionalization with OCFGs and boron doping, it is found that the enhancement of redox potential is reduced, which is mainly attributed to the open shell structure being changed to a closed-shell one. Nevertheless, the redox potentials are still higher than that of pristine C . From the observation that the lowest unoccupied molecular orbital of closed-shell OCFG- functionalized C B is correlated well with the redox potential, it was confirmed that the spin state is crucial to be considered to understand the relationship between electronic structure and redox properties.
The deformation of hydrated Nafion 117 was implemented using full-atomistic molecular dynamics simulation method to elucidate how the mechanical deformation affects the structure and transport of hydrated Nafion membrane. First, Nafion 117 membrane was equilibrated with 20 wt. % water content through an annealing procedure. The simulated characteristic correlation length and the diffusion coefficient of water and hydronium ions were analyzed for comparison with those observed in experiments. Then, the equilibrated Nafion membrane was deformed uniaxially up to 300 % of strain with a constant strain rate. The change in nanophase-segregation of hydrated Nafion during the deformation process was characterized using a directional structure factor as well as the pair correlation function in order to achieve fundamental understanding of the relationship of such structural change as a function of strain with the proton transport. It was found from the pair correlation analysis that the sulfonate distribution and sulfonate-hydronium correlation became stronger through the deformation while the hydronium ion solvation and the internal structure of water phase were not dependent on the deformation. From the directional structure factor profile, it was found that the long range correlation was developed in the perpendicular direction to the extension. The diffusions of water and hydronium ions were enhanced by 30 and 2 %, respectively, after the deformation. From this study, we suggested that it is desirable to investigate the proton transport using simulation methods covering larger dimensions with a long time scale.
Density functional theory and lattice model calculations are combined to study the permeability of hydrogen in Pd lightly alloyed with Au. This study shows that small amounts of Au substitutions in Pd leads to, respectively, an increase and decrease of the diffusivity and solubility of hydrogen in the alloy. The competition between these two phenomena depends on temperature and can yield dilute PdAu membranes with a hydrogen permeability higher than pure Pd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.