A continuous contact force model for the impact analysis of a two-particle collision is presented. The model uses the general trend of the Hertz contact law. A hysteresis damping function is incorporated in the model which represents the dissipated energy in impact. The parameters in the model are determined, and the validity of the model is established. The model is then generalized to the impact analysis between two bodies of a multibody system. A continuous analysis is performed using the equations of motion of either the multibody system or an equivalent two-particle model of the colliding bodies. For the latter, the concept of effective mass is presented in order to compensate for the effects of joint forces in the system. For illustration, the impact situation between a slider-crank mechanism and another sliding block is considered.
This papers presents a systematic method for deriving the minimum number of equations of motion for multibody system containing closed kinematic loops. A set of joint or natural coordinates is used to describe the configuration of the system. The constraint equations associated with the closed kinematic loops are found systematically in terms of the joint coordinates. These constraints and their corresponding elements are constructed from known block matrices representing different kinematic joints. The Jacobian matrix associated with these constraints is further used to find a velocity transformation matrix. The equations of motions are initially written in terms of the dependent joint coordinates using the Lagrange multiplier technique. Then the velocity transformation matrix is used to derive a minimum number of equations of motion in terms of a set of independent joint coordinates. An illustrative example and numerical results are presented, and the advantages and disadvantages of the method are discussed.
This paper presents useful and interesting identities between Euler parameters and their time derivatives. Using these identities, kinematic constraints and equations of motion for constrained mechanical systems are derived. These equations can be developed into a computer program to systematically generate all of the necessary equations to model mechanical systems. The compact form of these equations makes it possible to develop a general-purpose computer program for dynamic analysis of mechanical systems suitable for operation on small computers with limited memory space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.