Adult neurogenesis continuously contributes new neurons to hippocampal circuits and the programmed death of a subset of immature cells provides a primary mechanism controlling this contribution. Epileptic seizures induce strong structural changes in the hippocampus, including the induction of adult neurogenesis, changes in gene expression and mitochondrial dysfunction, which may all contribute to epileptogenesis. However, a possible interplay between this factors remains largely unexplored. Here, we investigated gene expression changes in the hippocampal dentate gyrus shortly after prolonged seizures induced by kainic acid, focusing on mitochondrial functions. Using comparative proteomics, we identified networks of proteins differentially expressed shortly after seizure induction, including members of the BCL2 family and other mitochondrial proteins. Within these networks, we report for the first time that the atypical BCL2 protein BCL2L13 controls caspase-3 activity and cytochrome C release in neural stem/progenitor cells. Furthermore, we identify BCL2L13 as a novel target of the cooperative action of microRNA-124 and microRNA-137, both upregulated shortly after seizure induction. This cooperative microRNA-mediated fine-tuning of BCL2L13 expression controls casp3 activity, favoring non-apoptotic caspase-3 functions in NSPC exposed to KA and thereby may contribute to the early neurogenic response to epileptic seizures in the dentate gyrus.
A decrease in adult hippocampal neurogenesis has been linked to age-related cognitive impairment. However, the mechanisms involved in this age-related reduction remain elusive. Glucocorticoid hormones (GC) are important regulators of neural stem/precursor cells (NSPC) proliferation. GC are released from the adrenal glands in ultradian secretory pulses that generate characteristic circadian oscillations. Here, we investigated the hypothesis that GC oscillations prevent NSPC activation and preserve a quiescent NSPC pool in the aging hippocampus. We found that hippocampal NSPC populations lacking expression of the glucocorticoid receptor (GR) decayed exponentially with age, while GR-positive populations decayed linearly and predominated in the hippocampus from middle age onwards. Importantly, GC oscillations controlled NSPC activation and GR knockdown reactivated NSPC proliferation in aged mice. When modeled in primary hippocampal NSPC cultures, GC oscillations control cell cycle progression and induce specific genome-wide DNA methylation profiles. GC oscillations induced lasting changes in the methylation state of a group of gene promoters associated with cell cycle regulation and the canonical Wnt signaling pathway. Finally, in a mouse model of accelerated aging, we show that disruption of GC oscillations induces lasting changes in dendritic complexity, spine numbers and morphology of newborn granule neurons. Together, these results indicate that GC oscillations preserve a population of GR-expressing NSPC during aging, preventing their activation possibly by epigenetic programming through methylation of specific gene promoters. Our observations suggest a novel mechanism mediated by GC that controls NSPC proliferation and preserves a dormant NSPC pool, possibly contributing to a neuroplasticity reserve in the aging brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.