Plutonium is a metal of both technological relevance and fundamental scientific interest. Nevertheless, the electronic structure of plutonium, which directly influences its metallurgical properties, is poorly understood. For example, plutonium's 5f electrons are poised on the border between localized and itinerant, and their theoretical treatment pushes the limits of current electronic structure calculations. Here we extend the range of complexity exhibited by plutonium with the discovery of superconductivity in PuCoGa5. We argue that the observed superconductivity results directly from plutonium's anomalous electronic properties and as such serves as a bridge between two classes of spin-fluctuation-mediated superconductors: the known heavy-fermion superconductors and the high-T(c) copper oxides. We suggest that the mechanism of superconductivity is unconventional; seen in that context, the fact that the transition temperature, T(c) approximately 18.5 K, is an order of magnitude greater than the maximum seen in the U- and Ce-based heavy-fermion systems may be natural. The large critical current displayed by PuCoGa5, which comes from radiation-induced self damage that creates pinning centres, would be of technological importance for applied superconductivity if the hazardous material plutonium were not a constituent.
The superconducting properties of the recently discovered PuMGa5 (M=Co,Rh) superconductors, including the power law behavior of the specific heat, the evolution of the superconducting transition T(c) temperature with pressure, and the linear relation between T(c) and ratio of tetragonal lattice parameters c/a, are compared to those of the heavy fermion CeMIn5 (M=Co,Rh,Ir) unconventional superconductors. The striking similarity of the properties between the two families of superconductors suggests a common physics and a common (magnetically mediated) mechanism of superconductivity.
The most remarkable advance that one can report as regards transuranium
systems is certainly the discovery of superconductivity above 18 K in PuCoGa5.
Motivated by this discovery, we have investigated bulk samples of both PuCoGa5
and its Rh analogue. Characterizations of polycrystalline
Co and Rh compounds are reported. The new PuRhGa5
compound is also found to become superconducting above 8 K.
We carried out a complete study (magnetic, electronic, dielectric, dynamic, and elastic properties) of the nickel hydroxide [Ni(OH)2] from first-principles calculations based on density functional theory. No theoretical investigations of these physical properties have been previously reported in literature. Our work supports that Ni(OH)2 is an A-type antiferromagnetic material. In addition, it is negative uniaxial and semiconducting with a direct band gap at the Γ point around 3 eV. By contrast to its electronic dielectric tensor, its static tensor is strongly anisotropic in the plane orthogonal to its optical axis. This anisotropy is mainly governed by a highly polar phonon centered around 510 cm−1 and assigned as a rotational Eu mode. Both Raman and infrared spectra have been computed to clarify the longstanding debate on the assignment of the Ni(OH)2 phonon modes reported in literature. All these theoretical results are fruitfully compared to the experimental ones obtained on large Ni(OH)2 "pseudosingle" crystals when available
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.