Ces dernières années, de nombreux projets ont porté et portent sur l'étude des transformations d'un territoire au cours du temps. Les phénomènes étudiés sont alors constitués de composantes temporelles, spatiales et fonctionnelles. Cette multiplicité des attributs est le coeur d'une certaine complexité. Nous proposons dans cet article d'articuler notre réflexion autour des modèles en partant de la définition du cadre de l'étude pour aller vers l'analyse des transformations, de l'évolution des objets dans une ou plusieurs des trois dimensions précédentes. Notre démarche sera illustrée par plusieurs projets ayant des domaines d'application variés : géographie, archéologie, histoire, agriculture. Pour chaque projet, nous détaillons les hypothèses simplificatrices utilisées. ABSTRACT. In recent years, many projects have focused on studying the transformations of a territory over time. The phenomena are then made of temporal, spatial and functional components.
We describe the workflow followed by historians when conducting a Historical Social Network Analysis (HSNA) with five steps: textual sources acquisition, digitization, annotation, network creation, and analysis/visualization. While most analysis and visualization tools only support the last step, we argue that addressing the 2-3 last steps would boost the humanists' analytical capabilities. We explain why the network modeling process is particularly challenging and can lead to distortions of the sources, biases, and traceability problems. We list three main properties that we believe the constructed network should satisfy: alignment with reality/documents (not only with concepts), traceability (from documents to analysis/visualization and back), and simplicity (understandable by most and not more complex than needed). We claim that the model of bipartite dynamic multivariate network with roles allows an effective annotation/encoding of historical sources while satisfying these properties. We provide real-world examples of how this model has been used to answer socio-historical questions using visual analytics tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.