Self-organized periodic structures have been observed on the surface of the ablation craters of Ge-S based chalcogenide glass produced after irradiation by a focused beam of a femtosecond Ti:sapphire laser (1 kHz, 34 fs, 806 nm). Scanning electron microscopy and atomic force microscopy images of irradiated spots show a periodic structure of ripples with a spatial period of 720 nm (close to the wavelength of fs laser pulses) and an alignment parallel to the electric field of light. With an increasing number of pulses, from 5 to 50 pulses, a characteristic evolution of ripples was observed from a random structure to a series of generally aligned peaks-and-valleys self-organized periodic structures. Additionally, at the center of the ablated spot, micro-domains appear where the ripples are still regular but are assembled in a more complex fashion. The experimental observations are interpreted in terms of strong temperature gradients combined with interference of the incident laser irradiation and a scattered surface electromagnetic wave.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.