The recent research explosion around implicit neural representations, such as NeRF, shows that there is immense potential for implicitly storing high‐quality scene and lighting information in compact neural networks. However, one major limitation preventing the use of NeRF in real‐time rendering applications is the prohibitive computational cost of excessive network evaluations along each view ray, requiring dozens of petaFLOPS. In this work, we bring compact neural representations closer to practical rendering of synthetic content in real‐time applications, such as games and virtual reality. We show that the number of samples required for each view ray can be significantly reduced when samples are placed around surfaces in the scene without compromising image quality. To this end, we propose a depth oracle network that predicts ray sample locations for each view ray with a single network evaluation. We show that using a classification network around logarithmically discretized and spherically warped depth values is essential to encode surface locations rather than directly estimating depth. The combination of these techniques leads to DONeRF, our compact dual network design with a depth oracle network as its first step and a locally sampled shading network for ray accumulation. With DONeRF, we reduce the inference costs by up to 48× compared to NeRF when conditioning on available ground truth depth information. Compared to concurrent acceleration methods for raymarching‐based neural representations, DONeRF does not require additional memory for explicit caching or acceleration structures, and can render interactively (20 frames per second) on a single GPU.
Subdivision surfaces have become an invaluable asset in production environments. While progress over the last years has allowed the use of graphics hardware to meet performance demands during animation and rendering, high‐performance is limited to immutable mesh connectivity scenarios. Motivated by recent progress in mesh data structures, we show how the complete Catmull‐Clark subdivision scheme can be abstracted in the language of linear algebra. While this high‐level formulation allows for a fully parallel implementation with significant performance gains, the underlying algebraic operations require further specialization for modern parallel hardware. Integrating domain knowledge about the mesh matrix data structure, we replace costly general linear algebra operations like matrix‐matrix multiplication by specialized kernels. By further considering innate properties of Catmull‐Clark subdivision, like the quad‐only structure after refinement, we achieve an additional order of magnitude in performance and significantly reduce memory footprints. Our approach can be adapted seamlessly for different use cases, such as regular subdivision of dynamic meshes, fast evaluation for immutable topology and feature‐adaptive subdivision for efficient rendering of animated models. In this way, patchwork solutions are avoided in favor of a streamlined solution with consistent performance gains throughout the production pipeline. The versatility of the sparse matrix linear algebra abstraction underlying our work is further demonstrated by extension to other schemes such as and Loop subdivision.
The rich and evocative patterns of natural tessellations endow them with an unmistakable artistic appeal and structural properties which are echoed across design, production, and manufacturing. Unfortunately, interactive control of such patterns‐as modeled by Voronoi diagrams, is limited to the simple two dimensional case and does not extend well tofreeform surfaces. We present an approach for direct modeling and editing of such cellular structures on surface meshes. The overall modeling experience is driven by a set of editing primitives which are efficiently implemented on graphics hardware. We feature a novel application for 3D printing on modern support‐free additive manufacturing platforms. Our method decomposes the input surface into a cellular skeletal structure which hosts a set of overlay shells. In this way, material saving can be channeled to the shells while structural stability is channeled to the skeleton. To accommodate the available printer build volume, the cellular structure can be further split into moderately sized parts. Together with shells, they can be conveniently packed to save on production time. The assembly of the printed parts is streamlined by a part numbering scheme which respects the geometric layout of the input model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.