Our current understanding of Southern hemisphere humpback whale (Megaptera novaeangliae) ecology assumes high-fidelity feeding on Antarctic krill in Antarctic waters during summer, followed by fasting during their annual migration to and from equatorial breeding grounds. An increase in the number of reported departures from this feeding/fasting model suggests that the current model may be oversimplified or, alternatively, undergoing contemporary change. Information about the feeding and fasting cycles of the two Australian breeding populations of humpback whales were obtained through stable isotope analysis of baleen plates from stranded adult individuals. Comparison of isotope profiles showed that individuals from the West Australian breeding population strongly adhered to the classical feeding model. By contrast, East Australian population individuals demonstrated greater heterogeneity in their feeding. On a spectrum from exclusive Antarctic feeding to exclusive feeding in temperate waters, three different strategies were assigned and discussed: classical feeders, supplemental feeders, and temperate zone feeders. Diversity in the inter-annual feeding strategies of humpback whales demonstrates the feeding plasticity of the species, but could also be indicative of changing dynamics within the Antarctic sea-ice ecosystem. This study presents the first investigation of trophodynamics in Southern hemisphere humpback whales derived from baleen plates, and further provides the first estimates of baleen plate elongation rates in the species.
Southern hemisphere humpback whales (Megaptera novaeangliae) rely on summer prey abundance of Antarctic krill (Euphausia superba) to fuel one of the longest‐known mammalian migrations on the planet. It is hypothesized that this species, already adapted to endure metabolic extremes, will be one of the first Antarctic consumers to show measurable physiological change in response to fluctuating prey availability in a changing climate; and as such, a powerful sentinel candidate for the Antarctic sea‐ice ecosystem. Here, we targeted the sentinel parameters of humpback whale adiposity and diet, using novel, as well as established, chemical and biochemical markers, and assembled a time trend spanning 8 years. We show the synchronous, inter‐annual oscillation of two measures of humpback whale adiposity with Southern Ocean environmental variables and climate indices. Furthermore, bulk stable isotope signatures provide clear indication of dietary compensation strategies, or a lower trophic level isotopic change, following years indicated as leaner years for the whales. The observed synchronicity of humpback whale adiposity and dietary markers, with climate patterns in the Southern Ocean, lends strength to the role of humpback whales as powerful Antarctic sea‐ice ecosystem sentinels. The work carries significant potential to reform current ecosystem surveillance in the Antarctic region.
The discarding of plastic products has led to the ubiquitous occurrence of microplastic particles in the marine environment. The uptake and depuration kinetics of ingested microplastics for many marine species still remain unknown despite its importance for understanding bioaccumulation potential to higher trophic level consumers. In this study, Antarctic krill ( Euphausia superba) were exposed to polyethylene microplastics to quantify acute toxicity and ingestion kinetics, providing insight into the bioaccumulation potential of microplastics at the first-order consumer level. In the 10 day acute toxicity assay, no mortality or dose-dependent weight loss occurred in exposed krill, at any of the exposure concentrations (0, 10, 20, 40, or 80% plastic diet). Krill exposed to a 20% plastic diet for 24 h displayed fast uptake (22 ng mg h) and depuration (0.22 h) rates, but plastic uptake did not reach steady state. Efficient elimination also resulted in no bioaccumulation over an extended 25 day assay, with most individuals completely eliminating their microplastic burden in less than 5 days post exposure. Our results support recent findings of limited acute toxicity of ingested microplastics at this trophic level, and suggest sublethal chronic end points should be the focus of further ecotoxicological investigation.
Southern hemisphere humpback whales are classified as high-fidelity Antarctic krill consumers and as such are vulnerable to variability and long-term changes in krill biomass. Evidence of heterogeneous feeding patterns of east coast of Australia migrating humpback whales has been observed, warranting a comprehensive assessment of interannual variability in their diet. We examined the lipid and fatty acid profiles of individuals of the east coast of Australia migrating stock sampled between 2008 and 2018. The use of live-sampled blubber biopsies showed that fatty acid profiles varied significantly among all years. The two trophic indicator fatty acids for Antarctic krill, 20:5ω3 and 22:6ω3 remained largely unchanged across the 10-year period, suggesting that Antarctic krill is the principal prey item. A distance-based linear model showed that 33% of the total variation in fatty acid profiles was explained by environmental variables and climate indices. Most of the variation was explained by the Southern Annular Mode (23.7%). The high degree of variability observed in this study was unexpected for a species that is thought to feed primarily on one prey item. We propose that the observed variability likely arises from changes in the diet of Antarctic krill rather than changes in the whale’s diet.
Bulk stable isotope analysis provides information regarding food web interactions, and has been applied to several cetacean species for the study of migration ecology. One limitation in bulk stable isotope analysis arises when a species, such as Southern hemisphere humpback whales, utilises geographically distinct food webs with differing isotopic baselines. Migrations to areas with different baselines can result in isotopic changes that mimic changes in feeding relations, leading to ambiguous food web interpretations. Here, we demonstrate the novel application of radiocarbon measurement for the resolution of such ambiguities. Radiocarbon was measured in baleen plates from humpback whales stranded in Australia between 2007 and 2013, and in skin samples collected in Australia and Antarctica from stranded and free-ranging animals. Radiocarbon measurements showed lower values for Southern Ocean feeding than for extra-Antarctic feeding in Australian waters. While the whales mostly relied on Antarctic-derived energy stores during their annual migration, there was some evidence of feeding within temperate zone waters in some individuals. This work, to our knowledge, provides the first definitive biochemical evidence for supplementary feeding by southern hemisphere humpback whales within temperate waters during migration. Further, the work contributes a powerful new tool (radiocarbon) for tracing source regions and geographical feeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.