Improved non-destructive instrumental approaches for grading fruit during post-harvest could be an efficient way to monitor stock in the apple industry. The objective of this study was to evaluate the ability of visible-near infrared (vis-NIR) spectroscopy in reflectance mode for classifying apples left on the shelf or stored in a cooled room. The ability of NIR spectroscopy to classify the duration of storage of three apple cultivars in two storage modalities was evaluated. A total of 450 fruit, sampled after 7, 14, 28, 60, 90 and 120 days of storage in a cooled room (CR) and 7, 14 and 28 days in shelflife (SL), has been studied. The classification of these modalities was analysed by factorial discriminant analysis (FDA) pooling the spectral data of all cultivars (global models) into a common data set. Then, the cultivar effect on the classification of the same modalities was analysed by processing data from each cultivar in separate factorial descriminant analyses. A preliminary analysis showed the genetic variability of spectral data due to the three apple cultivars. We show that vis-NIR spectroscopy allowed the correct classification of the fruits of each cultivar by more than 95%. The classification relied on both vis and NIR absorption bands: 500, 680, 1400 to 1700, 1850, 1950, 2200 and 2300 nm. We show that storage modalities of global models can be classified by more than 75% and 83% for fruits stored in a cooled room and shelf, respectively. Classification of the same storage modalities was improved by cultivar models with percentage of individuals correctly classified of 86% (Gala), 89% (Elstar) and 85% (Smoothee) for fruits stored in a cooled room and 95% (Gala), 98% (Elstar) and 95% (Smoothee) for fruits left in shelflife. We conclude that despite the slight increase of efficiency of the models when we considered each apple cultivar separately, global models applicable to a set of different cultivars presents a correct level of classification and could be usefull for some commercial applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.