Relevance. Ductility of basalt fiber reinforced concrete is an interesting property of basalt fiber reinforced concrete. However, very few experiments on this property is documented. The aim of the work. This paper provides a summarized analysis and review of existing publications on the ductility of lightweight basalt fiber reinforced concrete. Methods. This paper provides a comprehensive study on ductility of basalt reinforced concrete and lays the framework for proper laboratory experiment on the ductility of basalt fiber reinforced concrete. Results. From the findings of this review paper, ductility of dispersed basalt fiber reinforced concrete depends not only in the percentage of basalt fiber in the concrete but in the length and diameter of the basalt fiber. Increase in the percentage of basalt fiber in the concrete yielded an increase in the concrete ductility.
Expanded clay concrete (ECC) is a promising structural material for buildings due to its light weight and heat- and sound-insulating properties. Adding basalt fibers (BFs) in ECC reduces its brittleness and enhances its mechanical properties. The heat treatment (HT) of BF-reinforced ECC can significantly accelerate the strength growth during cast-in-situ construction, which allows the reduction of the turnover of the formwork and the construction period, as well as leading to lower construction costs. This paper presents an HT technology for load-bearing structures, containing a BF-reinforced ECC mix and using infrared rays for cast-in-situ construction. The issue of the strength growth of BF-reinforced ECC during HT has been studied. Microsilica and fly ash were added to the ECC mix to obtain a compressive strength of more than 20 MPa. Four different mixes of ECC with chopped BFs in the ratios of 1:0, 1:0.0045, 1:0.009 and 1:0.012 by weight of cement were studied. Test specimens were heated by infrared rays for 7, 9, 11, 13, 16 and 24 h. Then, the heat-treated specimens were tested for compressive strength after 0.5, 4, 12 and 24 h cooling periods. The analysis and evaluation of the experimental data were carried out based on probability theory and mathematical statistics. Mathematical models are proposed for forecasting the strength growth of BF-reinforced ECC during cast-in-situ construction.
Relevance. The brittleness of lightweight concrete has developed concern among structural engineers. This concern led to the search on how to improve the strength of lightweight concrete and still retain the weight lightness. Researches are ongoing to solve the strength challenges noticed in lightweight concrete, but at the moment there are few works on solving the issues regarding expanded clay concrete, thus it served as a motivation for studying this issue. The aim of the work is to analyze the effects of basalt fiber polymers on lightweight expanded clay concrete columns acting under imposed loads. Methods. To achieve this process, a total number of nine expanded clay cylindrical concrete columns were experimentalized and analyzed. 1.6 % of dispersed chopped basalt fiber was used in the concrete mixture which serves as reinforcement. Also, basalt fiber mesh was used in the experimental analysis. Results. The expanded clay cylindrical column without basalt fiber polymer withstood strength up to 19.6 tons at 58 minutes, the column with dispersed chopped basalt fiber withstood strength up to 26.67 tons at 61 minutes while the column with dispersed chopped basalt fiber and basalt mesh confinement got destroyed at 29 tons at 64 minutes. The results show that lightweight expanded clay cylindrical columns confined with basalt fiber mesh withstood higher load compared to the columns with just dispersed chopped basalt fiber and without it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.