Today, one of the most relevant areas in the construction industry, linked to the requirements and provisions of the Strategy of Scientific and Technological Development, and in accordance with the priority areas of science and technology development, is the development and improvement of low-material, low-energy and low - resource-intensive technologies for the manufacture of concrete and reinforced concrete products and structures. In this regard, the technology of vibrocentrifugation, which allows to obtain concrete with an improved variatropic structure, is quite promising. In this work, the influence of the design parameters of the technological equipment and the parameters of the centrifugation modes on the integral strength characteristics of vibrocentrifugated fiber concrete was evaluated. In total, 13 samples of the annular section were manufactured and tested. Calculations of the integral strength characteristics of vibrocentrifugated fiber concrete depending on the height of the technological protrusions of the clamps and the angular rotation speed were performed by the method of orthogonal composite planning of the 2nd order using the MathCAD program. The mathematical method of planning the experiment is aimed at creating mathematical empirical models that determine the influence of the incoming variable factors on the strength characteristics. Thus, according to the results of experimental studies, the optimal height of the technological protrusions and the angular speed of rotation were determined. Thus, further regulation of technological factors in the manufacture of vibrocentrifugated products and structures will allow us to obtain the most effective ring-section structures with enhanced variatropy.