The article develops methods and methodology for experimental studies of centrifuged and vibro-centrifuged concrete products of annular cross-section. They assess the real variatropy of the structure and confirm the correctness of the accepted research. An original technique for experimental studies of the variatropy of the cross-sections of vibrated, centrifuged and vibro-centrifuged concretes is proposed to determine their integral (common) and differential (differing in layers) strength and strain characteristics and deformation diagrams. It has been proved that with vibro-centrifugation it becomes possible to obtain concretes with improved structure and higher characteristics compared with centrifugation and vibration techniques. Experimental studies of the differential characteristics of centrifuged and vibro-centrifuged concretes under compression and tension revealed that the outer layer of concrete had the best characteristics after centrifugation and vibro-centrifugation, and the inner layer had the worst ones. The three-layer model of the variatropic structure for centrifuged and vibro-centrifuged concrete has been experimentally confirmed. The concrete of the outer layers had the highest strength and modulus of elasticity and the least deformability; the concrete of the inner layers had the lowest strength and modulus of elasticity and the highest deformability; and the concrete of the middle layers had average characteristics. The deformation diagrams of centrifuged and vibro-centrifuged concretes were also differentiated by layers, confirming the variatropy of the structure of such concretes. The deformation diagrams for the outer concrete layer demonstrated the highest strength; the diagrams for the inner concrete layer showed the lowest strength; and the diagrams for the middle concrete layer corresponded to mean characteristics.
Alkalization technology and its application to obtain high-performance concrete compositions is an urgent scientific problem that opens opportunities for improving building structures. The article is devoted to the new technology of manufacturing reinforced concrete structures with low energy consumption, resource, and labor intensity based on the improved variatropic configuration of vibro-centrifuged concrete using activated water with high pH. The synergistic effect of the joint use of the proposed novel solutions has been theoretically and experimentally proved. Thus, growth in physical and mechanical characteristics of up to 15–20% was obtained, the structure and its operational ability were improved (the effectiveness of structural improvement, expressed as a percentage, reached values over 70%, concerning control samples). A positive effect on the properties of vibro-centrifuged concrete over the entire thickness of the annular section has been revealed. A method for controlling the integral characteristics of concrete has been obtained. The possibility of regulating the variatropic structure and controlling the differential characteristics of vibro-centrifuged concrete has been established. An assessment of the constructive quality and variatropic efficiency of vibro-centrifuged concrete was carried out, and new calculated dependencies were proposed, expressed in the form of relative coefficients.
Currently, there is a scientific and practical deficit in new methods of integrated technological and design solutions based on improving the properties of concrete as the primary material that perceives compressive loads, and its joint work with various types of reinforcing rods. A new system using an integrated engineering approach to the design of building structures is proposed, which involves minimizing their cost and weight through numerical simulations and an experimental verification of the operation of reinforcing bars made of various materials in concrete of various densities. The control of the bearing capacity of reinforced building structures on the example of compressed elements is proposed to be carried out using the developed recipe-technological methods at the manufacturing stage. The economic and environmental efficiency of nano modification with the help of production waste and the use of lightweight dispersion-reinforced concrete to obtain such structures was revealed. The most effective concrete formulations showed strength gains ranging from 10% to 34%. Ultimately, this led to an increase in the bearing capacity of the elements up to 30%. The application of such an integrated lean approach will allow saving up to 20% of resources during construction.
One of the crucial problems in current construction is energy, resource, and material efficient technologies in both industrial and civil engineering, associated with new material manufacturing and building construction. This article is devoted to developing comprehensive technology for activation effects on concrete made by various production techniques: vibration, centrifugation, and vibro-centrifugation. The possibility of a significant improvement in the microstructure of concrete and obtaining materials with increased specified characteristics, depending on its manufacturing technology, were studied during the complex activation effect exposed to this concrete and its components. Chemical activation of water and mechanical activation of cement were considered. The urgency and prospects of double, complex mechanochemical activation of concrete mixture components were substantiated. It was proven that the complex mechanochemical activation of the concrete mixture components gives a synergistic effect in obtaining concrete composition with an improved structure and improved characteristics. Furthermore, the relationship between concrete production technology and the technology of activation of its components was established. It was revealed that the most effective is the complex mechanochemical activation of vibro-centrifuged concrete, which gives an increase in strength up to 30%. The study results indicate a further direction of development associated with an increase in variatropic characteristics using both prescription and technological factors.
Polymer composite reinforcement (PCR) and its use to produce high-quality concrete with the right design and technological and formulation solutions can demonstrate the results obtained with the steel rebars. This article discusses the synergistic effect from the combined reinforcement of concrete with traditional polymer rods and dispersed fiber, which, as a result, lead to an increase in strength and deformation characteristics and an improvement in the performance of compressed and bent structural elements. The synergistic effect of the joint work of polymer rods and dispersed reinforcement is considered in the context of relative indicators (structural quality factor CSQ), showing the relationship between strength characteristics and concrete density. The behavior of glass fiber in a cement matrix and the nature of its deformation during fracture were studied by scanning electron microscopy. It is shown that the use of PCR and dispersed reinforcement makes it possible to increase the strength characteristics of concrete in bending. In quantitative terms, the achieved results demonstrated that the CSQ values of a beam reinforced with a PCR frame with the addition of glass fiber were 3.4 times higher compared to the CSQ of a beam reinforced with steel reinforcement frames. In addition, for a beam reinforced with a PCR frame with no fiber addition, the CSQ values were three times higher.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.