The zero-point energy stored in the modes of an electromagnetic cavity has experimentally detectable effects, giving rise to an attractive interaction between the opposite walls, the static Casimir effect. A dynamical version of this effect was predicted to occur when the vacuum energy is changed either by moving the walls of the cavity or by changing the index of refraction, resulting in the conversion of vacuum fluctuations into real photons. Here, we demonstrate the dynamical Casimir effect using a Josephson metamaterial embedded in a microwave cavity at 5.4 GHz. We modulate the effective length of the cavity by flux-biasing the metamaterial based on superconducting quantum interference devices (SQUIDs), which results in variation of a few percentage points in the speed of light. We extract the full 4 × 4 covariance matrix of the emitted microwave radiation, demonstrating that photons at frequencies symmetrical with respect to half of the modulation frequency are generated in pairs. At large detunings of the cavity from half of the modulation frequency, we find power spectra that clearly show the theoretically predicted hallmark of the Casimir effect: a bimodal, "sparrow-tail" structure. The observed substantial photon flux cannot be assigned to parametric amplification of thermal fluctuations; its creation is a direct consequence of the noncommutativity structure of quantum field theory.Josephson junction | nanoelectronics | quantum mechanics A fundamental theoretical result of modern quantum field theory is that the quantum vacuum is unstable (1-6) under certain external perturbations that otherwise produce no consequences in a classical treatment (7). As a result of this instability, virtual fluctuations populating the quantum vacuum are converted into real particles by the energy provided by the perturbation. For example, the application of intense electrical fields extracts electron-positron pairs from a vacuum (Schwinger effect), the bending of space-time in the intense gravitational field at event horizons is responsible for the evaporation of black holes (Hawking radiation), the acceleration of an observer in the Minkowski vacuum results in the detection of particles (Unruh effect), and sudden changes in the boundary conditions of electromagnetic field modes or in the speed of light (index of refraction) create photons [dynamical Casimir effect (DCE)] (8). The DCE is a particular case of parametric amplification of vacuum fluctuations (3, 4, 6). To date, preliminary evidence for the analog of Hawking radiation has been obtained (9), whereas in the case of the DCE, a very recent experiment has reported production of photons by the nonadiabatic change of a boundary condition (10). Many other theoretical estimations and proposals for observing this effect in a variety of physical systems exist in the literature (11)(12)(13)(14)(15)(16)(17)(18)(19)(20).In this paper, we demonstrate the DCE by modulating the background in which the field propagates (3). We periodically change the index of refraction (which...
Split Cooper pair is a natural source for entangled electrons which is a basic ingredient for quantum information in solid state. We report an experiment on a superconductor-graphene double quantum dot (QD) system, in which we observe Cooper pair splitting (CPS) up to a CPS efficiency of ∼ 10%. With bias on both QDs, we are able to detect a positive conductance correlation across the two distinctly decoupled QDs. Furthermore, with bias only on one QD, CPS and elastic co-tunneling can be distinguished by tuning the energy levels of the QDs to be asymmetric or symmetric with respect to the Fermi level in the superconductor.
The existence of vacuum fluctuations is one of the most important predictions of modern quantum field theory. In the vacuum state, fluctuations occurring at different frequencies are uncorrelated. However, if a parameter in the Lagrangian of the field is modulated by an external pump, vacuum fluctuations stimulate spontaneous downconversion processes, creating squeezing between modes symmetric with respect to half of the frequency of the pump. Here we show that by double parametric pumping of a superconducting microwave cavity, it is possible to generate another type of correlation, namely coherence between photons in separate frequency modes. The coherence correlations are tunable by the phases of the pumps and are established by a quantum fluctuation that stimulates the simultaneous creation of two photon pairs. Our analysis indicates that the origin of this vacuum-induced coherence is the absence of which-way information in the frequency space.
The fundamental noise limit of a phase-preserving amplifier at frequency is the standard quantum limit . In the microwave range, the best candidates have been amplifiers based on superconducting quantum interference devices (reaching the noise temperature at 700 MHz), and non-degenerate parametric amplifiers (reaching noise levels close to the quantum limit at 8 GHz). We introduce a new type of an amplifier based on the negative resistance of a selectively damped Josephson junction. Noise performance of our amplifier is limited by mixing of quantum noise from Josephson oscillation regime down to the signal frequency. Measurements yield nearly quantum-limited operation, at 2.8 GHz, owing to self-organization of the working point. Simulations describe the characteristics of our device well and indicate potential for wide bandwidth operation.
Low-noise amplification atmicrowave frequencies has become increasingly important for the research related to superconducting qubits and nanoelectromechanical systems. The fundamental limit of added noise by a phase-preserving amplifier is the standard quantum limit, often expressed as noise temperature $T_{q} = \hbar {\omega}/2k_{B}$. Towards the goal of the quantum limit, we have developed an amplifier based on intrinsic negative resistance of a selectively damped Josephson junction. Here we present measurement results on previously proposed wide-band microwave amplification and discuss the challenges for improvements on the existing designs. We have also studied flux-pumped metamaterial-based parametric amplifiers, whose operating frequency can be widely tuned by external DC-flux, and demonstrate operation at $2\omega$ pumping, in contrast to the typical metamaterial amplifiers pumped via signal lines at $\omega$.Comment: 9 pages, 6 figure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.