Computed tomography (CT) is the reference method for cardiac imaging, but concerns have been raised regarding the radiation dose of CT examinations. Recently, photon counting detectors (PCDs) and interior tomography, in which the radiation beam is limited to the organ-of-interest, have been suggested for patient dose reduction. In this study, we investigated interior PCD-CT (iPCD-CT) for non-enhanced quantification of coronary artery calcium (CAC) using an anthropomorphic torso phantom and ex vivo coronary artery samples. We reconstructed the iPCD-CT measurements with filtered back projection (FBP), iterative total variation (TV) regularization, padded FBP, and adaptively detruncated FBP and adaptively detruncated TV. We compared the organ doses between conventional CT and iPCD-CT geometries, assessed the truncation and cupping artifacts with iPCD-CT, and evaluated the CAC quantification performance of iPCD-CT. With approximately the same effective dose between conventional CT geometry (0.30 mSv) and interior PCD-CT with 10.2 cm field-of-view (0.27 mSv), the organ dose of the heart was increased by 52.3% with interior PCD-CT when compared to CT. Conversely, the organ doses to peripheral and radiosensitive organs, such as the stomach (55.0% reduction), were often reduced with interior PCD-CT. FBP and TV did not sufficiently reduce the truncation artifact, whereas padded FBP and adaptively detruncated FBP and TV yielded satisfactory truncation artifact reduction. Notably, the adaptive detruncation algorithm reduced truncation artifacts effectively when it was combined with reconstruction detrending. With this approach, the CAC quantification accuracy was good, and the coronary artery disease grade reclassification rate was particularly low (5.6%). Thus, our results confirm that CAC quantification can be performed with the interior CT geometry, that the artifacts are effectively reduced with suitable interior reconstruction methods, and that interior tomography provides efficient patient dose reduction.
In interior cardiac computed tomography (CT) imaging, the x-ray beam is collimated to a limited field-of-view covering the heart volume, which decreases the radiation exposure to surrounding tissues. Spectral CT enables the creation of virtual monochromatic images (VMIs) through a computational material decomposition process. This study investigates the utility of VMIs for beam hardening (BH) reduction in interior cardiac CT, and further, the suitability of VMIs for coronary artery calcium (CAC) scoring and volume assessment is studied using spectral photon counting detector CT (PCD-CT). Ex vivo coronary artery samples (N=18) were inserted in an epoxy rod phantom. The rod was scanned in the conventional CT geometry, and subsequently, the rod was positioned in a torso phantom and re-measured in the interior PCD-CT geometry. The total energy (TE) 10-100 keV reconstructions from PCD-CT were used as a reference. The low energy 10-60 keV and high energy 60-100 keV data were used to perform projection domain material decomposition to polymethyl methacrylate and calcium hydroxylapatite basis. The truncated basis-material sinograms were extended using the adaptive detruncation method. VMIs from 30-180 keV range were computed from the detruncated virtual monochromatic sinograms using filtered back projection. Detrending was applied as a post-processing method prior to CAC scoring. The results showed that BH artefacts from the exterior structures can be suppressed with high (≥100 keV) VMIs. With appropriate selection of the monoenergy (46 keV), the underestimation trend of CAC scores and volumes shown in Bland-Altman (BA) plots for TE interior PCD-CT was mitigated, as the BA slope values were -0.02 for the 46 keV VMI compared to -0.21 the conventional TE image. To conclude, spectral PCD-CT imaging using VMIs could be applied to reduce BH artefacts interior CT geometry, and further, optimal selection of VMI may improve the accuracy of CAC scoring assessment in interior PCD-CT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.