This study proposes a single-step integrated optical fabrication scheme utilizing a 3D printer using digital light processing technology. Strong light confinement in the fabricated structure is realized through the introduction of an elevated (tower-shaped) waveguide in a transparent photosensitive resin (PX-8880). The fabrication is optimized to maximize light confinement through varying the dimensions of the guiding region and the tower structure. Benefiting from the surface roughness produced by the slicing process in the 3D printing (50 µm resolution), the fabricated structure was tested for vapor sensing. Obvious intensity dynamics have been reported due to the change of the optical scattering due to the presence of vapor as well as polymer vapor interaction. Though the reported response time is long, further optimization can lead to practical operation time.
Transformation optics offers a procedure to design the structures of metamaterials to find the material parameters needed in various applications. However, a methodology of a transformation optics is too complicated. To help users who are beginning to study metamaterials and transformation optics, a transformation optical userfriendly interface is developed. The interface is implemented based on the free-form touch transformation. It displays the starting space as a Cartesian grid. As the user touches and moves, the space transforms according to the direction and the intensity of the touch without inputting any equations. By combining various transformation templates, a fully arbitrary transformation can be realized. Transformation templates are created by basic functions such as the ring transformation in the invisibility cloak or the morphing of a half circle into a rectangle in the superlens. The interface provides both the input methods as well as the real-time visualization of the space making it easy and intuitive to design a metamaterial using the transformation optics. The program uses model-view-controller architecture. The connections of each class are presented in a diagram. Three examples from the touch interface are verified by the FDFD simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.