Scientific community and institutions (e. g., ICRP) consider that the Linear No-Threshold (LNT) model, which extrapolates stochastic risk at low dose/low dose rate from the risk at moderate/high doses, provides a prudent basis for practical purposes of radiological protection. However, biological low dose/dose rate responses that challenge the LNT model have been highlighted and important dowels came from radiobiology studies conducted in Deep Underground Laboratories (DULs). These extreme ultra-low radiation environments are ideal locations to conduct below-background radiobiology experiments, interesting from basic and applied science. The INFN Gran Sasso National Laboratory (LNGS) (Italy) is the site where most of the underground radiobiological data has been collected so far and where the first in vivo underground experiment was carried out using Drosophila melanogaster as model organism. Presently, many DULs around the world have implemented dedicated programs, meetings and proposals. The general message coming from studies conducted in DULs using protozoan, bacteria, mammalian cells and organisms (flies, worms, fishes) is that environmental radiation may trigger biological mechanisms that can increase the capability to cope against stress. However, several issues are still open, among them: the role of the quality of the radiation spectrum in modulating the biological response, the dependence on the biological endpoint and on the model system considered, the overall effect at organism level (detrimental or beneficial). At LNGS, we recently launched the RENOIR experiment aimed at improving knowledge on the environmental radiation spectrum and to investigate the specific role of the gamma component on the biological response of Drosophila melanogaster.
The use of high-linear energy transfer charged particles is gaining attention as a medical tool because of the emission of radiations with an efficient cell-killing ability. Considerable interest has developed in the use of targeted alpha-particle therapy for the treatment of micrometastases. Moreover, the use of helium beams is gaining momentum, especially for treating pediatric tumors. We analyzed the effects of alpha particles on bone marrow mesenchymal stromal cells (MSCs), which have a subpopulation of stem cells capable of generating adipocytes, chondrocytes, and osteocytes. Further, these cells contribute toward maintenance of homeostasis in the body. MSCs were irradiated with low and high doses of alpha particles or X-rays and a comparative biological analysis was performed. At a low dose (40 mGy), alpha particles exhibited a limited negative effect on the biology of MSCs compared with X-rays. No significant perturbation of cell cycle was observed, and a minimal increase in apoptosis or senescence was detected. Self-renewal was preserved as revealed by the CFU assay. On the contrary, with 2000 mGy alpha particles, we observed adverse effects on the vitality, functionality, and stemness of MSCs. These results are the consequence of different proportion of cells targeted by alpha particles or X-rays and the quality of induced DNA damage. The present study suggests that radiotherapy with alpha particles may spare healthy stem cells more efficaciously than X-ray treatments, an observation that should be taken into consideration by physicians while planning irradiation of tumor areas close to stem cell niches, such as bone marrow. J. Cell. Biochem. 118: 2993-3002, 2017. © 2017 Wiley Periodicals, Inc.
Literature data on the administration of conventional high-dose beams with (FF) or without flattening filters (FFF) show conflicting results on biological effects at the cellular level. To contribute to this field, we irradiated V79 Chinese hamster lung fibroblasts and two patient-derived glioblastoma stem-like cell lines (GSCs—named #1 and #83) using a clinical 10 MV accelerator with FF (at 4 Gy/min) and FFF (at two dose rates 4 and 24 Gy/min). Cell killing and DNA damage induction, determined using the γ-H2AX assay, and gene expression were studied. No significant differences in the early survival of V79 cells were observed as a function of dose rates and FF or FFF beams, while a trend of reduction in late survival was observed at the highest dose rate with the FFF beam. GSCs showed similar survival levels as a function of dose rates, both delivered in the FFF regimen. The amount of DNA damage measured for both dose rates after 2 h was much higher in line #1 than in line #83, with statistically significant differences between the two dose rates only in line #83. The gene expression analysis of the two GSC lines indicates gene signatures mimicking the prognosis of glioblastoma (GBM) patients derived from a public database. Overall, the results support the current use of FFF and highlight the possibility of identifying patients with candidate gene signatures that could benefit from irradiation with FFF beams at a high dose rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.