Scientific community and institutions (e. g., ICRP) consider that the Linear No-Threshold (LNT) model, which extrapolates stochastic risk at low dose/low dose rate from the risk at moderate/high doses, provides a prudent basis for practical purposes of radiological protection. However, biological low dose/dose rate responses that challenge the LNT model have been highlighted and important dowels came from radiobiology studies conducted in Deep Underground Laboratories (DULs). These extreme ultra-low radiation environments are ideal locations to conduct below-background radiobiology experiments, interesting from basic and applied science. The INFN Gran Sasso National Laboratory (LNGS) (Italy) is the site where most of the underground radiobiological data has been collected so far and where the first in vivo underground experiment was carried out using Drosophila melanogaster as model organism. Presently, many DULs around the world have implemented dedicated programs, meetings and proposals. The general message coming from studies conducted in DULs using protozoan, bacteria, mammalian cells and organisms (flies, worms, fishes) is that environmental radiation may trigger biological mechanisms that can increase the capability to cope against stress. However, several issues are still open, among them: the role of the quality of the radiation spectrum in modulating the biological response, the dependence on the biological endpoint and on the model system considered, the overall effect at organism level (detrimental or beneficial). At LNGS, we recently launched the RENOIR experiment aimed at improving knowledge on the environmental radiation spectrum and to investigate the specific role of the gamma component on the biological response of Drosophila melanogaster.
For workplaces where significant diurnal variations in radon concentrations are likely, measurements to evaluate average radon concentration during working hours could be useful for planning an optimized protection of workers according to the 2013/59/Euratom Directive. However, very few studies on this subject, generally limited to periods of few weeks, have been published. Therefore, a study has been conducted to evaluate the actual long-term radon exposure during working hours for a sample of 33 workplaces of four different types (postal offices, shops, restaurants, municipal offices), mainly located at the ground floor, and with expected considerable air exchange rate occurring during working hours due to frequent entrance/exit of persons or mechanical ventilation. The results show that the difference between the average radon level during working hours and that one during the whole day is about 20% on average and ranges from 0 to 50%. These observed differences, generally smaller compared with those found in other similar studies, are nearly the same if the analysis is restricted to workplaces with annual radon level higher than 300 Bq m–3, and therefore natural or mechanical ventilation normally present during working hours of the monitored workplaces cannot be considered an effective mitigation measure. However, the costs and time-response characteristics of the active monitors, as those used for the present study, will probably allow using more frequently a similar measurement strategy in workplaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.