This paper discusses the experimental campaign conducted by CEHINAV-UPM research group as request of IBERDROLA within the OCEAN LIDER RD project framework. The purpose of the campaign has been the hydrodynamic performance of a tension leg platform to support a wind energy turbine (TLPWT). The turbine chosen in this study has been the 5MW reference WT of NREL, the location depth has been 80m and the operation area is Estaca de Bares in the north-west of Spain. Regular waves, operational, survival, failure and transport experiments have been conducted. All tests have been performed in CEHINAV (UPM) model basin, except survival tests performed in CEHIPAR ocean basin. This document presents the experimental setup and results from decay tests, regular wave motion RAOs, irregular wave responses, tendon loads and accelerations. Experimental results are compared with available in-house numerical simulations and other numerical and experimental results found in literature.
Seakeeping behavior of a multibody system in side-by-side configuration in head sea condition is discussed in this paper. The system, which can be assimilated to a FLNG and LNG carrier during an offloading operation is composed of a barge and a prismatic geosim with two gap values. Seakeeping tests in regular waves have been performed in the model basin of CEHINAV-Technical University of Madrid (UPM). The movements for the geosim were restricted to the surge, heave and pitch motions (on the vertical plane), whereas the barge was kept fixed. In this way the gap remained constant during the tests. Numerical modeling has been undertaken using WAMIT and an in-house time-domain Rankine Panel Method (TDRPM). Response amplitude operators in terms of movements and wave amplitude in the gap obtained from seakeeping test and numerical models are documented in the paper, illustrating the limitation of the numerical codes regarding the modeling of this hydrodynamic problem. Numerical results indicate a resonant behavior of the waves in the gap for a range of frequencies, with amplitudes much higher than those observed during the tests. Due to the small distances considered in the experiments, these resonant waves are related to longitudinal wave modes in the gap. In order to overcome this problem, a procedure for introducing an external damping factor that attenuates the wave amplitude along the gap in the time-domain RPM is evaluated based on the experimental data.
In the last years hydrodynamic interaction between two vessels in side-by-side configuration is one of the hot issues in offshore floating body dynamics. The paper investigates the hydrodynamical aspects of a floating two body system. The topic is geared towards analysing the influence of the vessel’s draft in side-by-side configuration and in head sea condition. The need to solve this problem arises when one wants to study the hydrodynamic variation for the various stages of a offloading process with a defined operational gap. The system is composed of a barge and a prismatic geosim with a fixed gap value and with two barge’s draft values. Regular wave tests have been performed in the model basin of CEHINAV-Technical University of Madrid (UPM). The motion for the geosim was restricted to the surge, heave and pitch motions (just motions on the vertical plane), whereas the barge was kept fixed. The costant gap value is guaranteed during the tests. A numerical model has been created with WAMIT and with an in-house time-domain Rankine Panel Method (TDRPM). In each case the numerical and experimental response amplitude operators (RAOs) are obtained and compared, researching the limitation of the numerical codes for the gap flow modeling. In the past the gap effects on the numerical results have been studied varying the gap value finding resonant behavior in terms of motion and wave amplitude RAOs. Now the draft value contribution on the hydrodynamic effects is investigated. Also in this case the numerical results indicate a resonant behavior in determined frequencies in motion as well as in wave in the gap, that is not found in the tests. In order to overcome this problem, a procedure for introducing an external damping factor that attenuates the wave amplitude along the gap in the time-domain RPM is evaluated based on the experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.