The interactions between chlorophyll a and two beta-cyclodextrins, that have the same cavity size but different substituents, were studied in aqueous solutions. These supramolecular host-guest complexes were examined by a combination of UV/vis absorption, circular dichroism, NMR, and steady-state and time-resolved fluorescence measurements. The results indicate that all cyclodextrins solubilize the pigment mainly in monomeric form in water. The pigment forms 1:1 complexes with the heptakis(2,3,6-tri-O-methyl)-beta-cyclodextrin and 1:2 complexes with the hydroxypropyl-beta-cyclodextrin. In such complexes the methyl groups of the cyclodextrin inner cavity are involved in the interaction with the pigment as evidenced by NMR measurements. We also measured the luminescence of singlet oxygen photosensitized by chlorophyll a in the inclusion complexes.
The formation of inclusion complexes of hydroxypropyl-beta-cyclodextrin, heptakis(2,6-di-O-methyl)-beta-cyclodextrin and heptakis(2,3,6-tri-O-methyl)-beta-cyclodextrin with 5,10,15,20-tetrakis(4-pyridyl)porphyrin (TpyP) has been studied in aqueous buffer solution (phosphate buffer pH = 7 and I = 0.01 M) to give a structural and spectroscopic characterization of a new class of potential sensitizers for photodynamic therapy. The interaction was investigated by a combination of UV/Vis absorption, fluorescence anisotropy, time-resolved fluorescence and circular dichroism. The experimental results point to the presence of the pigment in water in a monomeric complexed form. The fluorescence anisotropy measurements suggest that TpyP forms 1:1 complexes with heptakis(2,3,6-tri-O-methyl)-beta-cyclodextrin and hydroxypropyl-beta-cyclodextrin, while 1:2 complexes are obtained with heptakis(2,6-di-O-methyl)-beta-cyclodextrin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.