This article introduces the FAO crop model AquaCrop. It simulates attainable yields of major herbaceous crops as a function of water consumption under rainfed, supplemental, deficit, and full irrigation conditions. The growth engine of AquaCrop is water‐driven, in that transpiration is calculated first and translated into biomass using a conservative, crop‐specific parameter: the biomass water productivity, normalized for atmospheric evaporative demand and air CO2 concentration. The normalization is to make AquaCrop applicable to diverse locations and seasons. Simulations are performed on thermal time, but can be on calendar time, in daily time‐steps. The model uses canopy ground cover instead of leaf area index (LAI) as the basis to calculate transpiration and to separate out soil evaporation from transpiration. Crop yield is calculated as the product of biomass and harvest index (HI). At the start of yield formation period, HI increases linearly with time after a lag phase, until near physiological maturity. Other than for the yield, there is no biomass partitioning into the various organs. Crop responses to water deficits are simulated with four modifiers that are functions of fractional available soil water modulated by evaporative demand, based on the differential sensitivity to water stress of four key plant processes: canopy expansion, stomatal control of transpiration, canopy senescence, and HI. The HI can be modified negatively or positively, depending on stress level, timing, and canopy duration. AquaCrop uses a relatively small number of parameters (explicit and mostly intuitive) and attempts to balance simplicity, accuracy, and robustness. The model is aimed mainly at practitioner‐type end‐users such as those working for extension services, consulting engineers, governmental agencies, nongovernmental organizations, and various kinds of farmers associations. It is also designed to fit the need of economists and policy specialists who use simple models for planning and scenario analysis.
Projections of climate change impacts on crop yields are inherently uncertain(1). Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate(2). However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models(1,3) are difficult(4). Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development and policymaking
The AquaCrop model was developed to replace the former FAO I&D Paper 33 procedures for the estimation of crop productivity in relation to water supply and agronomic management in a framework based on current plant physiological and soil water budgeting concepts. This paper presents the software of AquaCrop for which the concepts and underlying principles are described in the companion paper (Steduto et al., 2009). Input consists of weather data, crop characteristics, and soil and management characteristics that define the environment in which the crop will develop. Algorithms and calculation procedures modeling the infiltration of water, the drainage out of the root zone, the canopy and root zone development, the evaporation and transpiration rate, the biomass production, and the yield formation are presented. The mechanisms of crop response to cope with water shortage are described by only a few parameters, making the underlying processes more transparent to the user. AquaCrop is a menu‐driven program with a well‐developed user interface. With the help of graphs which are updated each time step (1 d) during the simulation run, the user can track changes in soil water content, and the corresponding changes in crop development, soil evaporation and transpiration rate, biomass production, and yield development. One can halt the simulation at each time step, to study the effect of changes in water related inputs, making the model particularly suitable for developing deficit irrigation strategies and scenario analysis.
There is an ongoing debate on what constitutes sustainable intensification of agriculture (SIA). In this paper, we propose that a paradigm for sustainable intensification can be defined and translated into an operational framework for agricultural development. We argue that this paradigm must now be defined—at all scales—in the context of rapidly rising global environmental changes in the Anthropocene, while focusing on eradicating poverty and hunger and contributing to human wellbeing. The criteria and approach we propose, for a paradigm shift towards sustainable intensification of agriculture, integrates the dual and interdependent goals of using sustainable practices to meet rising human needs while contributing to resilience and sustainability of landscapes, the biosphere, and the Earth system. Both of these, in turn, are required to sustain the future viability of agriculture. This paradigm shift aims at repositioning world agriculture from its current role as the world’s single largest driver of global environmental change, to becoming a key contributor of a global transition to a sustainable world within a safe operating space on Earth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.