Avian pathogenic Escherichia coli (APEC), a subset of extraintestinal pathogenic E. coli (ExPEC), are the etiologic agent of avian colibacillosis, one of the main causes of economic losses in the poultry industry. The aim of this study was to characterize E. coli isolated from diseased chickens in Senegal to elucidate their virulence potential and antimicrobial resistance (AMR). A total of 58 isolates, each from a separate farm, were characterized for AMR, virulence, and AMR genes, phylogroup, serogroup, biofilm formation, and pulsed-field gel electrophoresis, and for two isolates, whole-genome sequencing (WGS). Fifty isolates (86.2%) were multidrug resistant. Many AMR genes were detected, including variants of bla encoding resistance to third-generation cephalosporins (five isolates [8.6%]). Most fluoroquinolone-nonsusceptible isolates (21/26) were carriers of mutations in gyrA (Ser83Leu, Asp87Asn, and/or Asp87Tyr) and/or parC (Ser80Ile) genes. Forty-nine (84.5%) isolates exhibited at least one of the virulence markers of APEC, among which 23 (39.7%) were defined as potential virulent APEC. In addition, 10 isolates, of which 9 were defined as APEC, carried virulence profiles corresponding to ExPEC. Seven isolates, of which six were classified as ExPEC, belonged to phylo-serogroup F-O25, and following WGS of two of these isolates, were found to belong to the serotype O25:H1 and to the sequence type ST624. Some isolates classified as ExPEC, including F-O25, were found to strongly produce biofilm, suggesting their capability to persist for long time in the environment. F-O25-isolates, although found in different widely separated farms, formed a single cluster that included clones, suggesting that these isolates may have originated from a common source. Taken together, these results suggest that some E. coli involved in chicken colibacillosis in Senegal may pose a human health risk.
Escherichia coli is a normal inhabitant of the intestinal microbiota of chickens, a small proportion of which may be avian pathogenic E. coli (APEC) or potential extraintestinal pathogenic E. coli (ExPEC), capable of causing disease in humans. These E. coli may also be resistant to antimicrobials of critical importance in human or veterinary health. This study aims to 1) determine the prevalence of antimicrobial resistance (AMR) and resistance genes, multidrug resistance (MDR), chromosomal mechanisms of quinolone-resistance and virulence profiles of E. coli isolated from healthy chicken farms in the region of Dakar, Senegal, 2) investigate the spread of third-generation cephalosporins (3GC) resistance in E. coli isolated from healthy chicken farms with respect to virulence and resistance genes, serogroups, Pulsed-Field Gel Electrophoresis (PFGE), phylogenetic groups, plasmid types and transferability and 3) determine whether nonsusceptibility against 3GC on farms could be linked to risk factors. More than 68% of isolates from environmental faecal and drinking water samples, carcasses and carcass washes collected on 32 healthy chicken farms were multidrug resistant (MDR), resistance to antimicrobials critical in human health (3GC or ciprofloxacin) being found in all types of samples. Ciprofloxacin resistance was due to mutations in the gyrA and parC genes, 95% of tested farms harboring isolates carrying three mutations, in gyrA (Ser83Ile and Asp87Asn) and parC (Ser80Ile). Nine of the 32 farms (28.1%) demonstrated the presence of one or more 3GC-nonsusceptible indicator isolates but none of the potential risk factors were significantly associated with this presence on farms. Following ceftriaxone enrichment, presumptive extended-spectrum beta-lactamase/AmpC-beta-lactamase (ESBL/AmpC)-producer isolates were found in 17 of the 32 farms. 3GC resistance was mediated by blaCMY-2 or blaCTX-M genes, blaCTX-M being of genotypes blaCTX-M-1, blaCTX-M-8 and for the first time in chickens in Senegal, the genotype blaCTX-M-15. Clonally related ESBL/AmpC-producer isolates were found on different farms. In addition, blaCTX-M genes were identified on replicon plasmids I1 and K/B and blaCMY-2 on K/B, I1 and B/O. These plasmids were found in isolates of different clusters. In addition, 18 isolates, some of which were ESBL/AmpC-producers, were defined as potential human ExPEC. In conclusion, E. coli isolates potentially pathogenic for humans and demonstrating MDR, with resistance expressed against antimicrobials of critical importance in human health were found in healthy chickens in Senegal. Our results suggest that both clonal spreading and horizontal gene transfer play a role in the spread of 3GC-resistance and that chickens in Senegal could be a reservoir for AMR and ExPEC for humans. These results highlight the importance of raising awareness about compliance with biosecurity measures and prudent use of antimicrobials.
Background Antimicrobial resistance (AMR) in food-producing animals is a global public health issue. This study investigated AMR and virulence profiles of E. coli isolated from healthy chickens in Vietnam. E. coli were isolated from fecal samples collected in five chicken farms located in the provinces of Hoa Binh, Thai Nguyen and Bac Giang in the North of Vietnam. These isolates were examined by disk diffusion for their AMR, PCR for virulence and AMR genes, pulsed-field gel electrophoresis for relatedness between bla CMY-2 / bla CTX-M –positive isolates, electroporation for transferability of bla CMY-2 or bla CTX-M genes and sequencing for mutations responsible for ciprofloxacin resistance. Results Up to 99% of indicator isolates were multidrug resistant. Resistance to third-generation cephalosporins (3GC) was encoded by both bla CTX-M and bla CMY-2 genes; bla CTX-M genes being of genotypes bla CTX-M-1 , − 14 , − 15 , − 17 , − 57 and − 87 , whereas ciprofloxacin resistance was due to mutations in the gyrA and parC genes. Some isolates originating from farms located in different provinces of Vietnam were found to be closely related, suggesting they may have been disseminated from a same source of contamination. Plasmids may also have played a role in the diffusion of 3GC-resistance as the bla CMY-2 gene was located on plasmids A/C and I1, and the bla CTX-M gene variants were carried by I1, FIB, R and HI1. Plasmids carrying the bla CMY-2 / bla CTX-M genes also co-transferred resistance to other antimicrobials. In addition, isolates potentially capable of infecting humans, of which some produced bla CMY-2 / bla CTX-M , were identified in this study. Conclusions Both clones and plasmids could be involved in the dissemination of 3GC-resistant E. coli within and between chicken farms in Vietnam. These results demonstrate the necessity to monitor AMR and control antimicrobial use in poultry in Vietnam. Electronic supplementary material The online version of this article (10.1186/s12917-019-1849-1) co...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.