In the Arctic Ocean’s southern Beaufort Sea (SB), the length of the sea ice melt season (i.e., period between the onset of sea ice break-up in summer and freeze-up in fall) has increased substantially since the late 1990s. Historically, polar bears (Ursus maritimus) of the SB have mostly remained on the sea ice year-round (except for those that came ashore to den), but recent changes in the extent and phenology of sea ice habitat have coincided with evidence that use of terrestrial habitat is increasing. We characterized the spatial behavior of polar bears spending summer and fall on land along Alaska’s north coast to better understand the nexus between rapid environmental change and increased use of terrestrial habitat. We found that the percentage of radiocollared adult females from the SB subpopulation coming ashore has tripled over 15 years. Moreover, we detected trends of earlier arrival on shore, increased length of stay, and later departure back to sea ice, all of which were related to declines in the availability of sea ice habitat over the continental shelf and changes to sea ice phenology. Since the late 1990s, the mean duration of the open-water season in the SB increased by 36 days, and the mean length of stay on shore increased by 31 days. While on shore, the distribution of polar bears was influenced by the availability of scavenge subsidies in the form of subsistence-harvested bowhead whale (Balaena mysticetus) remains aggregated at sites along the coast. The declining spatio-temporal availability of sea ice habitat and increased availability of human-provisioned resources are likely to result in increased use of land. Increased residency on land is cause for concern given that, while there, bears may be exposed to a greater array of risk factors including those associated with increased human activities.
Effective long-term wildlife conservation planning for a species must be guided by information about population vital rates at multiple scales. Greater sage-grouse (Centrocercus urophasianus) populations declined substantially during the twentieth century, largely as a result of habitat loss and fragmentation. In addition to the importance of conserving large tracts of suitable habitat, successful conservation of this species will require detailed information about factors affecting vital rates at both the population and range-wide scales. Research has shown that sage-grouse population growth rates are particularly sensitive to hen and chick survival rates. While considerable information on hen survival exists, there is limited information about chick survival at the population level, and currently there are no published reports of factors affecting chick survival across large spatial and temporal scales. We analyzed greater sage-grouse chick survival rates from 2 geographically distinct populations across 9 years. The effects of 3 groups of related landscape-scale covariates (climate, drought, and phenology of vegetation greenness) were evaluated. Models with phenological change in greenness (NDVI) performed poorly, possibly due to highly variable production of forbs and grasses being masked by sagebrush canopy. The top drought model resulted in substantial improvement in model fit relative to the base model and indicated that chick survival was negatively associated with winter drought. Our overall top model included effects of chick age, hen age, minimum temperature in May, and precipitation in July. Our results provide important insights into the possible effects of climate variability on sage-grouse chick survival.
Our research presents a proof-of-concept that explores a new and innovative method to identify large animals in aerial imagery with single day image differencing. We acquired two aerial images of eight fenced pastures and conducted a principal component analysis of each image. We then subtracted the first principal component of the two pasture images followed by heuristic thresholding to generate polygons. The number of polygons represented the number of potential cattle (Bos taurus) and horses (Equus caballus) in the pasture. The process was considered semi-automated because we were not able to automate the identification of spatial or spectral thresholding values. Imagery was acquired concurrently with ground counts of animal numbers. Across the eight pastures, 82% of the animals were correctly identified, mean percent commission was 53%, and mean percent omission was 18%. The high commission error was due to small mis-alignments generated from image-to-image registration, misidentified shadows, and grouping behavior of animals. The high probability of correctly identifying animals suggests short time interval image differencing could provide a new technique to enumerate wild ungulates occupying grassland ecosystems, especially in isolated or difficult to access areas. To our knowledge, this was the first attempt to use standard change detection techniques to identify and enumerate large ungulates.
Whether a species is rare and requires protection or is overabundant and needs control, an accurate estimate of population size is essential for the development of conservation plans and management goals. Current wildlife surveys are logistically difficult, frequently biased, and time consuming. Therefore, there is a need to provide additional techniques to improve survey methods for censusing wildlife species. We examined three methods to enumerate animals in remotely sensed aerial imagery: manual photo interpretation, an unsupervised classification, and multiimage, multi-step technique. We compared the performance of the three techniques based on the probability of correctly detecting animals, the probability of under-counting animals (false positives), and the probability of over-counting animals (false negatives). Manual photo-interpretation had a high probability of detecting an animal (81% ± 24%), the lowest probability of over-counting an animal (8% ± 16%), and a relatively low probability of under-counting an animal (19% ± 24%). An unsupervised, ISODATA classification with subtraction of a background image had the highest probability of detecting an animal (82% ± 10%), a high probability of over-counting an animal (69% ± 27%) but a low probability of under-counting an animal (18% ± 18%). The multiimage, multi-step procedure incorporated more information, but had the lowest probability of detecting an animal (50% ± 26%), the highest probability of over-counting an animal (72% ± 26%), and the highest probability of under-counting an animal (50% ± 26%). Manual interpreters better discriminated between animal and non-animal features and had fewer over-counting errors (i.e., false positives) than either the unsupervised classification or the multi-image, multi-step techniques indicating that benefits of automation need to be weighed against potential losses in accuracy. Identification and counting of animals in remotely sensed imagery could provide wildlife managers with a tool to improve population estimates and aid in enumerating animals across large natural systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.