SignificanceDespite improvements in our ability to manipulate ever-smaller volumes, most workflows in cell biology still use volumes of many microliters. We describe a method for creating microfluidic arrangements containing submicroliter volumes. It exploits interfacial forces dominant at the microscale to confine liquids with fluid (not solid) walls. We demonstrate many basic manipulations required for cell culture and some widely used downstream workflows. The method eliminates many problems associated with the fabrication of conventional microfluidic devices, thereby providing a simple on-demand approach for fabrication of microfluidic devices using materials familiar to biologists.
Power dissipation levels in mobile phones continue to increase due to gaming, higher power applications, and increased functionality associated with the internet. The current cooling methodologies of natural convection and radiation limit the power dissipation within a mobile phone to between 1-2 W depending on size. As power dissipation levels increase, products such as mobile phones will require active cooling to ensure that the devices operate within an acceptable temperature envelop from both user comfort and reliability perspectives. In this paper, we focus on the applied thermal engineering problem of an active cooling solution within a typical mobile phone architecture by implementing a custom centrifugal fan within the mobile phone. Its performance is compared in terms of flow rates and pressure drops, allowable phone heat dissipation and maximum phone surface temperature as this is the user constraint for a variety of simulated PCB architectures in the mobile phone. Perforated plates with varying porosity through different size orifices are used to simulate these architectures. The results show that the power level dissipated by a phone for a constant surface temperature may be increased by ~50 -75% depending on pressure drop induced by the internal phone architecture. Hence for successful implementation and efficient utilization of active cooling will require chip layout to be considered at the design stage.
Heat transfer enhancement using segmented non-boiling gas-liquid streams is examined. Segmentation results in a two phase flow of liquid/gas having a constant liquid fraction, i.e. no phase change occurs. In this flow configuration, enhanced heat transfer occurs as a result of a shorter effective thermal length and internal fluid circulation in the liquid plugs. A simple theory for laminar segmented flows is developed based on Graetz theory and comparisons made with existing data from the literature and new data obtained in a companion study.
There is an increasing need for low profile thermal management solutions for applications in the range of 5–10W, targeted at portable electronic devices. This need is emerging due to enhanced power dissipation levels in portable electronics, such as mobile phones, portable gaming machines, and ultraportable personal computers. This work focuses on the optimization of such a solution within the constraints of the profile and footprint area. A number of fan geometries have been investigated where both the inlet and exit rotor angles are varied relative to the heat conducting fins on a heat sink. The ratio of the fan diameter to the heat sink fin length was also varied. The objective was to determine the optimal solution from a thermal management perspective within the defined constraints. The results show a good thermal performance and highlight the need to develop the heat sink and fan as an integrated thermal solution rather than in isolation as is the traditional methodology. An interesting finding is that the heat transfer scales are in line with turbulent rather than laminar correlations despite the low Reynolds number. It is also found that while increasing the pumping power generally improves the thermal performance, only small gains are achieved for relatively large pumping power increases. This is important in optimizing portable systems where reduced power consumption is a competitive advantage in the marketplace.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.