Acrylic grafted chitin (chitin-PAA) was modified with glycidyltrimethylammonium chloride (GTMAC) with the aim of promoting wound healing. The chitin-PAA-GTMAC gels with different GTMAC contents were compared with the original chitin-PAA gel and Intrasite gel for their efficacy in deep wound healing of Wistar rats. Four full-thickness wounds were made on the dorsal skin of rats and then each was treated with 4 materials; chitin-PAA, chitin-PAA-GTMAC(1:4), chitin-PAA-GTMAC(1:10) and Intrasite gel. During 18 days of treatment, the wounds were visually observed and calculated for wound size using image analysis program. Skin wound tissues of sacrificed rats were processed for routine histological observation and immunohistochemistry of proliferating cell nuclear antigen (PCNA). The wounds covered with the chitin derivatives either with or without GTMAC showed a significant reduction in wound size in day 9 in comparison with day 12 for those covered with Intrasite gel. The faster rate and the better pattern of epidermal development observed in histological study as well as the higher dermal cell proliferation (PCNA expression) also demonstrated the better efficiency in wound healing of the chitin derivatives than Intrasite. The earliest epidermal development of the wounds treated with chitin-PAA-GTMAC (1:4) among the tested materials suggested the most promising of this material for the treatment of full-thickness open wound.
Serine protease inhibitors, known as serpins, are pleiotropic regulators of endogenous and exogenous proteases, and molecule transporters. They have been documented in animals, plants, fungi, bacteria, and viruses; here, we characterize a serpin from the trematode platyhelminth Schistosoma mansoni. At least eight serpins have been found in the genome of S. mansoni, but only two have characterized molecular properties and functions. Here, the function of S. mansoni serpin isoform 3 (SmSPI) was analyzed, using both computational and molecular biological approaches. Phylogenetic analysis showed that SmSPI was closely related to Schistosoma haematobium serpin and Schistosoma japonicum serpin B10. Structure determined in silico confirmed that SmSPI belonged to the serpin superfamily, containing nine α-helices, three β-sheets, and a reactive central loop. SmSPI was highly expressed in schistosomules, predominantly in the head gland, and in adult male and female with intensive accumulation on the spines, which suggests that it may have a role in facilitating intradermal and intravenous survival. Recombinant SmSPI was overexpressed in Escherichia coli; the recombinant protein was of the same size (46 kDa) as the native protein. Immunological analysis suggested that mice infected with S. mansoni responded to rSmSPI at 8 weeks postinfection (wpi) but not earlier. The inhibitory activity of rSmSPI was specific to chymotrypsin but not trypsin, neutrophil elastase, and porcine pancreatic elastase. Elucidating the biological and physiological functions of SmSPI as well as other serpins will lead to further understanding of host-parasite interaction machinery that may provide novel strategies to prevent and control schistosomiasis in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.