We demonstrate robust interface strain-induced perpendicular magnetic anisotropy in atomically flat ferrimagnetic insulator Tm 3 Fe 5 O 12 films grown with pulsed laser deposition on substituted-Gd 3 Ga 5 O 12 substrate which maximizes the tensile strain at the interface. In bilayers consisting of Pt and TIG, we observe large squared Hall hysteresis loops over a wide range of thicknesses of Pt at room temperature. When a thin Cu layer is inserted between Pt and TIG, the Hall hysteresis magnitude decays but stays finite as the thickness of Cu increases up to 5 nm. However, if the Cu layer is placed atop Pt instead, the Hall hysteresis magnitude is consistently larger than when the Cu layer with the same thickness is inserted in between for all Cu thicknesses. These results suggest that both the proximityinduced ferromagnetism and spin current contribute to the anomalous Hall effect.
Welding of ceramics is a key missing component in modern manufacturing. Current methods cannot join ceramics in proximity to temperature-sensitive materials like polymers and electronic components. We introduce an ultrafast pulsed laser welding approach that relies on focusing light on interfaces to ensure an optical interaction volume in ceramics to stimulate nonlinear absorption processes, causing localized melting rather than ablation. The key is the interplay between linear and nonlinear optical properties and laser energy–material coupling. The welded ceramic assemblies hold high vacuum and have shear strengths comparable to metal-to-ceramic diffusion bonds. Laser welding can make ceramics integral components in devices for harsh environments as well as in optoelectronic and/or electronic packages needing visible-radio frequency transparency.
We study acoustic emission avalanches during the process of failure of porous alumina samples (Al2O3) under compression. Specimens with different porosities ranging from 30% to 59% have been synthesized from a mixture of fine-grained alumina and graphite. The compressive strength as well as the characteristics of the acoustic activity have been determined. The statistical analysis of the recorded acoustic emission pulses reveals, for all porosities, a broad distribution of energies with a fat tail, compatible with the existence of an underlying critical point. In the region of 35%-55% porosity, the energy distributions of the acoustic emission signals are compatible with a power-law behaviour over two decades in energy with an exponent ϵ = 1.8 ± 0.1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.