Disposal of plastic waste has become a widely discussed issue, due to the potential environmental impact of improper waste disposal. Polyethylene terephthalate (PET) packaging accounted for 44.7% of single-serve beverage packaging in the US in 2021, and 12% of global solid waste. A strategic solution is needed to manage plastic packaging solid waste. Major beverage manufacturers have pledged to reduce their environmental footprint by taking steps towards a sustainable future. The PET bottle has several properties that make it an environmentally friendly choice. The PET bottle has good barrier properties as its single-layer, mono-material composition allows it to be more easily recycled. Compared to glass, the PET bottle is lightweight and has a lower carbon footprint in production and transportation. With modern advancements to decontamination processes in the recycling of post-consumer recycled PET (rPET or PCR), it has become a safe material for reuse as beverage packaging. It has been 30 years since the FDA first began certifying PCR PET production processes as compliant for production of food contact PCR PET, for application within the United States. This article provides an overview of PET bottle-to-bottle recycling and guidance for beverage manufacturers looking to advance goals for sustainability.
Asparagus (Asparagus officinalis L.) is one of the most popular vegetables because it contains a wealth of fiber and several essential nutrients. It is a very perishable commodity due to its very high respiration rate. To maintain product quality and to satisfy consumer demand as a convenient food, modified atmosphere packaging (MAP), vacuum skin packaging (VSP), and microwaveable containers were used to extend the shelf life of fresh‐cut asparagus as a ready‐to‐eat food product. The objective of this study was to determine the shelf life of fresh‐cut asparagus packed in MAP and VSP microwaveable tray systems at commercial storage conditions, 4°C, 80% RH. Weight loss, moisture content, O2/CO2 concentration in the package headspace, product pH, microbial growth, and sensory evaluation were used to determine the product quality and shelf life. Moreover, the preference of product appearance and the quality of the cooked asparagus in both microwaveable tray systems at different cooking times and microwave power levels was also sensorially evaluated. During storage for 21 days, there was no significant difference (p > 0.05) in weight loss, moisture content, and pH. Sanitation and packaging techniques also helped to retard the microbial growth. Both techniques, combined with refrigeration, help to maintain the freshness and product shelf life up to 21 days for MAP and 18 days for VSP. On the basis of hedonic scale results, consumers preferred the appearance of both packaging types. Both microwavable tray systems, thus, can help to prolong the shelf life of fresh‐cut asparagus and can be eaten directly from the package.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.