In the mitochondria and chloroplasts of higher plants there is an RNA editing activity responsible for specific C-to-U conversions and for a few U-to-C conversions leading to RNA sequences different from the corresponding DNA sequences. RNA editing is a post-transcriptional process which essentially affects the transcripts of protein coding genes, but has also been found to modify non-coding transcribed regions, structural RNAs and intron sequences. RNA editing is essential for correct gene expression: proteins translated from edited transcripts are different from the ones deduced from the genes sequences and usually present higher similarity to the corresponding non-plant homologues. Initiation and stop codons can also be created by RNA editing. RNA editing has also been shown to be required for the stabilization of the secondary structure of introns and tRNAs. The biochemistry of RNA editing in plant organelles is still largely unknown. In mitochondria, recent experiments indicate that RNA editing may be a deamination process. A plastid transformation technique showed to be a powerful tool for the study of RNA editing. The biochemistry as well as the evolutionary features of RNA editing in both organelles are compared in order to identify common as well as organelle-specific components.
Sequence analysis of amplified cDNAs derived from the maize chloroplast rpoB transcript which encodes the beta subunit of a chloroplast specific, DNA dependent RNA polymerase reveals four C‐to‐U editing sites clustered within 150 nucleotides of the 5′ terminal region of the rpoB message. These newly identified editing sites confirm the bias of chloroplast editing for certain codon transitions and for second codon positions which both appear suggestive for an involvement of the translational apparatus in the editing process. This supposition prompted us to investigate editing of the rpoB transcript from ribosome deficient, and hence protein synthesis deficient, plastids of the barley mutant albostrians. In this mutant editing is, however, not impaired at any of the editing sites functional in the barley wild type rpoB transcript. This demonstrates that chloroplast editing is neither linked to nor dependent on the chloroplast translational apparatus. As a further consequence any peptide components required for chloroplast editing must be encoded in the nuclear genome. In spite of strong sequence conservation only three of the four editing sites identified in the maize rpoB transcript are functional in barley. This indicates that sequences surrounding an editing site alone are not sufficient as determinants for the editing process in chloroplasts, but that trans‐acting templates carrying the editing information for each individual site may also be required.
Transcriptionally active chromosomes (TACs) were isolated from mature chloroplasts of barley, from proplastids enriched in basal segments of barley primary foliage leaves, and from ribosome-deficient plastids of heat-bleached barley leaves. Immunological analysis with a specific antibody raised against the plastid rpoA gene product revealed that chloroplasts contain an immunoreactive protein of 38 kDa in the TAC fraction which appears to be identical to the alpha-subunit contained in the soluble RNA polymerase (sRNAP) fraction of the same chloroplasts. However, only traces of immunoreactive protein were detected in a TAC preparation derived from "proplastids". A positive correlation could be demonstrated between transcriptional activity and the amount of immunoreactive 38-kDa protein by analyzing different TAC fractions eluting at different times during gel filtration of a standard TAC preparation as well as in TAC preparations obtained under various detergent conditions.
The NADH dehydrogenase subunit A (ndhA) gene from maize chloroplasts encodes a highly conserved peptide, which at several positions could be restored to consensus sequences by potential C-to-U editing of the codons involved. This gene was, therefore, chosen for analysis of its mRNA sequence in the form of amplified cDNA. A comparison of this cDNA sequence with the plastome-encoded ndhA sequence reveals four C-to-U editing sites, thereby demonstrating as a novel finding that chloroplast editing can also affect internal mRNA positions. All the edited codons restore amino acids that are conserved in the ndhA-encoded peptides of other chloroplast species. Alignment with homologous mitochondrial NADH-ubiquinone reductase subunit 1 (nad1) sequences of plant and even nonplant species shows that two of the editing positions restore universally conserved amino acids and that one editing site is even shared with nad1 mRNA of plant mitochondria. No editing sites could be detected in the cDNA derived from transcripts of the maize chloroplast RNA polymerase alpha-subunit (rpoA) gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.