We present evidence for a novel member of the hepadnavirus family that is endemic in wild arctic ground squirrels (Spermophylus parryi kennicotti) in Alaska. This virus, designated arctic squirrel hepatitis virus (ASHV), was initially detected in the livers of animals bearing large hepatic nodules by nucleic acid hybridization with hepadnavirus probes and in plasma by cross-reactivity with antibodies to hepadnavirus surface and core antigens. The complete nucleotide sequence of the 3,302-bp-long ASHV genome was determined and compared with those of ground squirrel hepatitis virus (GSHV) and woodchuck hepatitis virus (WHV); all sequences were organized into four open reading frames, designated pre-C/C, pre-S/S, pol, and X. Despite roughly equivalent variability among the three rodent hepadnaviruses (around 16% base and 19% amino acid exchanges), ASHV appeared to be more closely related to GSHV than to WHV in phylogenetic analysis. Accordingly, preliminary studies of the pathology of ASHV infection suggested that ASHV may be a less efficient oncogenic agent than WHV. About one-third of aged animals maintained in captivity, including virus-infected as well as uninfected squirrels, developed large liver nodules, consisting of hepatocellular adenomas or carcinomas or nonmalignant lesions characterized by drastic microvesicular steatosis. ASHVinfected arctic ground squirrels may serve as a new model with which to analyze the contribution of hepadnavirus-and host-specific determinants to liver pathology and tumorigenesis.
Angiotensin I-converting enzyme (ACE) is a key enzyme in the regulation of systemic blood pressure and plays a major role in the renin-angiotensin and bradykinin-kinin systems, at the luminal surface of the vascular endothelia. To identify the promoter region, the transcription regulatory elements and the cell specificity of the ACE gene, five successive DNA deletions of the 5' upstream region (-1214, -754, -472, -343, -132 bp relative to the start site of transcription) were isolated and fused in sense and antisense orientations to the bacterial chloramphenicol acetyltransferase (CAT) reporter gene in the promoterless plasmid pBLCAT3. Promoter activities were measured in transient transfection assays using three different cell lines from rabbit endothelium (RE), human embryocarcinoma (Tera-1) and hepatocarcinoma cells (HepG2). All five fragments of the ACE promoter region directed expression of the CAT gene when transfected into the endothelial and the embryocarcinoma cells, which contain endogenous ACE mRNA and express ACE activity. In contrast only minimal levels of promoter activity were obtained on transfection into hepatocarcinoma cells in which endogenous ACE mRNA and ACE activity were not detected. Transfection of RE and Tera-1 cells demonstrated that promoter activity was defined by the length of the ACE promoter sequence inserted into the construct. The 132 bases located upstream from the transcription start site were sufficient to confer ACE promoter activity, whereas the sequences upstream from -472 bp and between -343 bp and -132 bp were responsible for a decrease of promoter activity. Furthermore, the minimal 132 bp of the ACE promoter contains elements which direct cell-specific CAT expression. In addition, the DNA transfection study in the presence of dexamethasone suggested that the potential glucocorticoid regulatory elements, located in the sequence of the ACE promoter, are not functional.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.