Because of differences in craniofacial morphology and dentition between the earliest American skeletons and modern Native Americans, separate origins have been postulated for them, despite genetic evidence to the contrary. We describe a near-complete human skeleton with an intact cranium and preserved DNA found with extinct fauna in a submerged cave on Mexico's Yucatan Peninsula. This skeleton dates to between 13,000 and 12,000 calendar years ago and has Paleoamerican craniofacial characteristics and a Beringian-derived mitochondrial DNA (mtDNA) haplogroup (D1). Thus, the differences between Paleoamericans and Native Americans probably resulted from in situ evolution rather than separate ancestry.
Extensive flooded cave systems are developed in a zone 8-12 km inland of the east coast of the Yucatan Peninsula, Quintana Roo, Mexico. In plan, the systems comprise cross-linked anastomosing networks composed of horizontal elliptical tubes (which are actively developing where associated with the present fresh water/saline water mixing zone) and canyon-shaped passages. Both forms are heavily modified by sediment and speleothem infill, and extensive collapse. The pattern of Quintana Roo caves differs both from the mixing chamber form of flank-margin eogenetic caves, and also the dendritic and rectilinear maze patterns of epigenetic continental (telogenetic) caves. Unlike the latter, Quintana Roo caves are formed by coastal zone fresh water/saline water mixing processes. While mixing dissolution is also responsible for development of flank-margin caves, these may be typical of small islands and arid areas with limited coastal discharge, whereas Quintana Roo-type caves are formed when coastal discharge is greater. In the Quintana Roo caves, multiple phases of cave development are associated with glacio-eustatic changes in sea level. Two critical conditions control cave development following lowstands: (1) if the passage remains occupied by the mixing zone and connected to underlying deep cave systems, and (2) for passages above the mixing zone, if active freshwater flow is maintained by tributaries. In the first case, inflow of saline water drives mixing dissolution, enabling removal of the lowstand carbonate fill and continued passage enlargement. In the second, despite limited dissolution in the fresh water, continued removal of uncemented sediments can maintain the cave void. Where neither of these conditions is met, enlargement will cease, and the cave void will become occluded by collapse and sediment infill.
A low-cost data logging platform is presented that provides long-term operation in remote or submerged environments. Three premade “breakout boards” from the open-source Arduino ecosystem are assembled into the core of the data logger. Power optimization techniques are presented which extend the operational life of this module-based design to >1 year on three alkaline AA batteries. Robust underwater housings are constructed for these loggers using PVC fittings. Both the logging platform and the enclosures, are easy to build and modify without specialized tools or a significant background in electronics. This combination turns the Cave Pearl data logger into a generalized prototyping system and this design flexibility is demonstrated with two field studies recording drip rates in a cave and water flow in a flooded cave system. This paper describes a complete DIY solution, suitable for a wide range of challenging deployment conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.